Chứng tỏ rẳng hai hình chữ nhật cùng kích thước (cùng chiều dài và chiều rộng) thì bằng nhau
Giả sử hai hình chữ nhật ABCD và A’B’C’D’ có AB = CD = A′B′ = C′D′,AD = BC = A′D = B′C′
Khi đó ABC và A’B’C’ là hai tam giác vuông bằng nhau, do đó có phép dời hình F biến tam giác ABC thành tam giác A’B’C’
Khi đó phép dời hình F biến trung điểm O của AC thành trung điểm O’ của A’C’
Nhưng vì O và O’ lần lượt cũng là trung điểm của BD và B’D’ nên F cũng biến D thành D’
Vậy F biến ABCD thành A’B’C’D’, nên theo định nghĩa, hai hình chữ nhật đó bằng nhau.
-- Mod Toán 11
Copyright © 2021 HOCTAP247