Bài tập 34 trang 19 SGK Toán 9 Tập 1

Lý thuyết Bài tập
Câu hỏi:

Bài tập 34 trang 19 SGK Toán 9 Tập 1

Rút gọn các biểu thức sau:

a) \(ab^{2}.\sqrt{\frac{3}{a^{2}b^{4}}}\) với \(a < 0, b\neq 0\)

b) \(\sqrt{\frac{27(a - 3)^{2}}{48}}\) với \(a > 3\)

c) \(\sqrt{\frac{9+12a+4a^{2}}{b^{2}}}\) với \(a \geq -1,5;b<0\)

d) \((a - b).\sqrt{\frac{ab}{(a - b)^{2}}}\) với \(a < b < 0\)

Chúng ta cần xem xét điều kiện đề bài cho để khi lấy biểu thức ra khỏi giá trị tuyệt đối, giá trị đó giữ nguyên hay đổi dấu, cụ thể ở bài 34 này.

Câu a:

Vì \(a < 0, b\neq 0\) nên \(|a|=-a\)

\(ab^{2}.\sqrt{\frac{3}{a^{2}b^{4}}}=ab^2.\frac{\sqrt{3}}{|a|b^2}=ab^2.\frac{\sqrt{3}}{-ab^2}=-\sqrt{3}\)

Câu b:

Vì \(a > 3\) nên \(a-3>0\Rightarrow |a-3|=a-3\)

\(\sqrt{\frac{27(a - 3)^{2}}{48}}=\sqrt{\frac{27}{48}}.|a-3|=\frac{3}{4}(a-3)\)

Câu c:

\(a \geq -1,5\Leftrightarrow a+1,5>0\Leftrightarrow 2a+3>0\Rightarrow |2a+3|=a+3\)

\(b<0\Rightarrow |b|=-b\)

\(\sqrt{\frac{9+12a+4a^{2}}{b^{2}}}=\frac{\sqrt{(2a+3)^2}}{|b|}=\frac{|2a+3|}{-b}=-\frac{2a+3}{b}\)

Câu d:

Vì \(a < b < 0\) nên \(a-b<0\Rightarrow |a-b|=b-a\)

\((a - b).\sqrt{\frac{ab}{(a - b)^{2}}}=(a-b).\frac{\sqrt{ab}}{|a-b|}=(a-b).\frac{\sqrt{ab}}{b-a}=-\sqrt{ab}\)

 

-- Mod Toán 9

Copyright © 2021 HOCTAP247