Rút gọn biểu thức sau:
a) \(\sqrt{\frac{a}{b}}+\sqrt{ab}+\frac{a}{b}\sqrt{\frac{b}{a}}\) với \(a>0, b>0\)
b) với \(m>0;x\neq 1\)
Để rút gọn biểu thức chứa biến ở bài 63 này, các bạn học sinh hãy thực hiện phương pháp đưa thừa số ra ngoài dấu căn, đặt nhân tử chung và rút gọn.
Câu a:
\(\sqrt{\frac{a}{b}}+\sqrt{ab}+\frac{a}{b}\sqrt{\frac{b}{a}}=\frac{\sqrt{ab}}{b}+\sqrt{ab}+\frac{a}{b}.\frac{\sqrt{ab}}{a}=\frac{(b+2)\sqrt{ab}}{b}\)
Câu b:
Vì \(m>0;x\neq 1\) nên:
Biểu thức luôn có nghĩa và: \(|m|=m\)
\(=\sqrt{\frac{4m^{2}(1-2x+x^{2})}{81(1-2x+x^{2})}}=\sqrt{\frac{4m^{2}}{81}}=\frac{2m}{9}\)
-- Mod Toán 9
Copyright © 2021 HOCTAP247