A. \(\int {f\left( x \right)g\left( x \right){\rm{d}}x = } \int {f\left( x \right){\rm{d}}x.\int {g\left( x \right){\rm{d}}x} } \)
B. \(\int {2f\left( x \right){\rm{d}}x = 2} \int {f\left( x \right){\rm{d}}x} \)
C. \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x = } \int {f\left( x \right){\rm{d}}x + \int {g\left( x \right){\rm{d}}x} } \)
D. \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x = } \int {f\left( x \right){\rm{d}}x - \int {g\left( x \right){\rm{d}}x} } \)
A. \(f\left( x \right) = \sqrt x + \ln x + C\)
B. \(f\left( x \right) = - \sqrt x + \frac{1}{x} + \ln x + C\)
C. \(f\left( x \right) = - \frac{1}{{{x^2}}} + \ln x + C\)
D. \(f\left( x \right) = \frac{{x - 1}}{{{x^2}}}\)
A. \(f\left( x \right) = {e^{{x^3}}}\)
B. \(f\left( x \right) = 3{x^2}.{e^{{x^3}}}\)
C. \(f\left( x \right) = \frac{{{e^{{x^3}}}}}{{3{x^2}}}\)
D. \(f\left( x \right) = {x^3}.{e^{{x^3} - 1}}\)
A. \(f\left( x \right) = {x^2} + {e^x}\)
B. \(f\left( x \right) = \frac{{{x^4}}}{3} + {e^x}\)
C. \(f\left( x \right) = 3{x^2} + {e^x}\)
D. \(f\left( x \right) = \frac{{{x^4}}}{{12}} + {e^x}\)
A. \(\frac{{{x^3}}}{3} - \frac{{3{x^2}}}{2} - \ln \left| x \right| + C\)
B. \(\frac{{{x^3}}}{3} - \frac{{3{x^2}}}{2} + \frac{1}{{{x^2}}} + C\)
C. \(\frac{{{x^3}}}{3} - \frac{{3{x^2}}}{2} + \ln x + C\)
D. \(\frac{{{x^3}}}{3} - \frac{{3{x^2}}}{2} + \ln \left| x \right| + C\)
A. \(\frac{{496\pi }}{{15}}\)
B. \(\frac{{32\pi }}{{15}}\)
C. \(\frac{{4\pi }}{3}\)
D. \(\frac{{16\pi }}{{15}}\)
A. 2
B. 6
C. 8
D. 4
A. \(x\, + \frac{1}{{x - \,1}}\, + \,C\)
B. \(1 + \frac{1}{{{{\left( {x - 1} \right)}^2}}} + C\)
C. \(\frac{{{x^2}}}{2}\, + \,\ln \left| {x\, - \,1} \right|\, + \,C\)
D. \({x^2}\, + \,\ln \left| {x - 1} \right|\, + C\)
A. \(V = \pi \int\limits_a^b {{f^2}\left( x \right){\rm{d}}x} \)
B. \(V = 2\pi \int\limits_a^b {{f^2}\left( x \right){\rm{d}}x} \)
C. \(V = {\pi ^2}\int\limits_a^b {{f^2}\left( x \right){\rm{d}}x} \)
D. \(V = {\pi ^2}\int\limits_a^b {f\left( x \right){\rm{d}}x} \)
A. \({x^3} + C\)
B. \(\frac{{{x^3}}}{3} + x + C\)
C. 6x + C
D. \({x^3} + x + C\)
A. \(\cot \frac{\pi }{3} - \cot \frac{\pi }{4}\)
B. \(\cot \frac{\pi }{3} + \cot \frac{\pi }{4}\)
C. \( - \cot \frac{\pi }{3} + \cot \frac{\pi }{4}\)
D. \( - \cot \frac{\pi }{3} - \cot \frac{\pi }{4}\)
A. \(F\left( x \right) = {\pi ^2}x + C\)
B. \(F\left( x \right) = 2\pi x + C\)
C. \(F\left( x \right) = \frac{{{\pi ^3}}}{3} + C\)
D. \(F\left( x \right) = \frac{{{\pi ^2}{x^2}}}{2} + C\)
A. \(\int {kf\left( x \right){\rm{d}}x} = k\int {f\left( x \right){\rm{d}}x} \) với \(k \in R\)
B. \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x} = \int {f\left( x \right){\rm{d}}x} + \int {g\left( x \right){\rm{d}}x} \) với f(x), g(x) liên tục trên R
C. \(\int {{x^\alpha }} {\rm{d}}x = \frac{1}{{\alpha + 1}}{x^{\alpha + 1}}\) với \(\alpha \ne -1\)
D. \({\left( {\int {f\left( x \right){\rm{d}}x} } \right)^\prime } = f\left( x \right)\)
A. \(f\left( x \right) = - \frac{1}{{{x^2}}} + \frac{1}{x}.\)
B. \(f\left( x \right) = \sqrt x + \frac{1}{{2x}}.\)
C. \(f\left( x \right) = \frac{1}{{{x^2}}} + \ln \left( {2x} \right).\)
D. \(f\left( x \right) = - \frac{1}{{{x^2}}} + \frac{1}{{2x}}.\)
A. \(\int {{3^{2x}}{\rm{d}}x} = \frac{{{3^{2x}}}}{{\ln 3}} + C\)
B. \(\int {{3^{2x}}{\rm{d}}x} = \frac{{{9^x}}}{{\ln 3}} + C\)
C. \(\int {{3^{2x}}{\rm{d}}x} = \frac{{{3^{2x}}}}{{\ln 9}} + C\)
D. \(\int {{3^{2x}}{\rm{d}}x} = \frac{{{3^{2x + 1}}}}{{2x + 1}} + C\)
A. \({x^2} - \frac{1}{2}\cos 2x + C\)
B. \({x^2} + \frac{1}{2}\cos 2x + C\)
C. \({x^2} - 2\cos 2x + C\)
D. \({x^2} + 2\cos 2x + C\)
A. \(\int {f\left( x \right){\rm{d}}x} = \frac{1}{{2018}}.{{\rm{e}}^{2018x}} + C\)
B. \(\int {f\left( x \right){\rm{d}}x} = {{\rm{e}}^{2018x}} + C\)
C. \(\int {f\left( x \right){\rm{d}}x} = 2018{{\rm{e}}^{2018x}} + C\)
D. \(\int {f\left( x \right){\rm{d}}x} = {{\rm{e}}^{2018x}}\ln 2018 + C\)
A. \(f\left( x \right) = \frac{{\sin 3x}}{3}\)
B. \(f\left( x \right) = - 3\sin 3x\)
C. \(f\left( x \right) = 3\sin 3x\)
D. \(f\left( x \right) = - \sin 3x\)
A. \(\int {{5^{2x}}{\rm{d}}x} = 2.\frac{{{5^{2x}}}}{{\ln 5}} + C\)
B. \(\int {{5^{2x}}{\rm{d}}x} = \frac{{{{25}^x}}}{{2\ln 5}} + C\)
C. \(\int {{5^{2x}}{\rm{d}}x} = {2.5^{2x}}\ln 5 + C\)
D. \(\int {{5^{2x}}{\rm{d}}x} = \frac{{{{25}^{x + 1}}}}{{x + 1}} + C\)
A. \(I = {x^2}{\mathop{\rm s}\nolimits} {\rm{in}}\frac{x}{2} + C\)
B. \(I = x\sin x + {\rm{cos}}x + C\)
C. \(I = x\sin x - {\rm{cos}}x + C\)
D. \(I = {x^2}{\rm{cos}}\frac{x}{2} + C\)
A. b - a = 1
B. \({a^2} - {b^2} = a - b - 1\)
C. \({b^2} - {a^2} = b - a + 1\)
D. a - b = 1
A. \(\int\limits_a^b {\left| {f\left( x \right)} \right|dx} \)
B. \(\int\limits_a^b {{f^2}\left( x \right)dx} \)
C. \(\int\limits_a^b {f\left( x \right)dx} \)
D. \(\pi \int\limits_a^b {f\left( x \right)dx} \)
A. \(\int {f\left( x \right){\rm{d}}x} = {\ln ^2}x + C\)
B. \(\int {f\left( x \right){\rm{d}}x} = \frac{1}{2}{\ln ^2}x + C\)
C. \(\int {f\left( x \right){\rm{d}}x} = \ln x + C\)
D. \(\int {f\left( x \right){\rm{d}}x} = {e^x} + C\)
A. P = 7
B. P = -4
C. P = 4
D. P = 10
A. \(\frac{1}{2}{x^4} - 9x + C\)
B. \(4{x^4} - 9x + C\)
C. \(\frac{1}{4}{x^4} + C\)
D. \(4{x^3} - 9x + C\)
A. \(\int {f\left( x \right){\rm{d}}x} = 6x - 8\cos x + C\)
B. \(\int {f\left( x \right){\rm{d}}x} = 6x + 8\cos x + C\)
C. \(\int {f\left( x \right){\rm{d}}x} = {x^3} - 8\cos x + C\)
D. \(\int {f\left( x \right){\rm{d}}x} = {x^3} + 8\cos x + C\)
A. \(F\left( x \right) = 2\ln \left| {2x + 1} \right| - \frac{1}{2}\)
B. \(F\left( x \right) = 2\ln \left| {2x + 1} \right| + 1\)
C. \(F\left( x \right) = \frac{1}{2}\ln \left| {2x + 1} \right| + 1\)
D. \(F\left( x \right) = \ln \left| {2x + 1} \right| + \frac{1}{2}\)
A. \(2 \ln 2-1\)
B. \(2 \ln 3-1\)
C. \(\ln 3-1\)
D. \(\ln 2-1\)
A. \(2 \ln 3\)
B. \(\ln 3\)
C. \(\ln 2\)
D. \(2 \ln 2\)
A. \(\frac{4-\pi}{3}\)
B. \(\frac{4-\pi}{2}\)
C. \(\frac{5-\pi}{3}\)
D. \(\frac{5-\pi}{2}\)
A. \(\frac{5}{3}\)
B. \(\frac{10}{3}\)
C. \(\frac{20}{3}\)
D. \(\frac{2}{3}\)
A. \(\ln \left(\frac{2 e}{e+1}\right)\)
B. \(\ln \left(\frac{e}{e+1}\right)\)
C. \(2 \ln \left(\frac{e}{e+1}\right)\)
D. \(2 \ln \left(\frac{2 e}{e+1}\right)\)
A. \(I=\frac{\pi}{2}\)
B. \(I=\frac{\pi}{4}\)
C. \(I=\frac{3 \pi}{4}\)
D. \(I=\frac{5 \pi}{4}\)
A. \(I=\frac{\pi}{4}\)
B. \(I=\frac{\pi}{2}\)
C. \(I=\frac{\pi}{3}\)
D. \(I=\pi\)
A. \(\frac{4}{3}\)
B. \(\frac{1}{3}\)
C. \(\frac{2}{3}\)
D. \(\frac{5}{3}\)
A. \(I=\frac{32}{128} \pi\)
B. \(I=\frac{33}{128} \pi\)
C. \(I=\frac{31}{128} \pi\)
D. \(I=\frac{30}{128} \pi\)
A. \(I=\frac{\pi}{32}\)
B. \(I=\frac{\pi}{16}\)
C. \(I=\frac{\pi}{8}\)
D. \(I=\frac{\pi}{4}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247