Bài tập 10 trang 135 SGK Toán 11 NC

Lý thuyết Bài tập
Câu hỏi:

Bài tập 10 trang 135 SGK Toán 11 NC

Gọi C là nửa đường tròn đường kính AB = 2R, C1 là đường gồm hai nửa đường tròn đường kính \(\frac{{AB}}{2}\), C2 là đường gồm bốn nửa đường tròn đường kính \(\frac{{AB}}{4}\),... C­n là đường gồm 2n nửa đường tròn đường kính \(\frac{{AB}}{{2n}}\),... (h. 4.2). Gọi pn là độ dài của Cn, Sn là diện tích hình phẳng giới hạn bởi C­n và đoạn thẳng AB.

a. Tính pn và Sn.

b. Tìm giới hạn của các dãy số (pn) và (S­n).

a) Ta có \({p_n} = {2^n}.\frac{R}{{{2^n}}}.\pi  = \pi R\) với mọi n

\({S_n} = {2^n}.{\left( {\frac{R}{{{2^n}}}} \right)^2}.\frac{\pi }{2} = \frac{{\pi {R^2}}}{2}.\frac{1}{{{2^n}}}\)

b) Ta có \(\lim {p_n} = \pi R;\lim {S_n} = 0\)

 

 

-- Mod Toán 11

Copyright © 2021 HOCTAP247