Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Chương 4: Giới Hạn Bài tập 5 trang 142 SGK SGK Đại số & Giải tích 11

Bài tập 5 trang 142 SGK SGK Đại số & Giải tích 11

Lý thuyết Bài tập
Câu hỏi:

Bài tập 5 trang 142 SGK SGK Đại số & Giải tích 11

Tính các giới hạn sau

a) \(\lim_{x\rightarrow 2}\frac{x+3}{x^2+x+4}\)

b) \(\lim_{x\rightarrow -3}\frac{x^2+5x+6}{x^2+3x}\)

c) \(\lim_{x\rightarrow 4^-}\frac{2x-5}{x-4}\)

d) \(\lim_{x\rightarrow +\infty } (-x^3+x^2-2x+1)\)

e) \(\lim_{x\rightarrow -\infty } \frac{x+3}{3x-1}\)

f) \(\lim_{x\rightarrow -\infty } \frac{\sqrt{x^2-2x+4}-x}{3x-1}\)

Câu a:

\(\lim_{x\rightarrow 2}\frac{x+3}{x^2+x+4}=\frac{1}{2}.\)

Câu b:

\(\lim_{x\rightarrow -3}\frac{x^2+5x+6}{x^2+3x}= \lim_{x\rightarrow -3}\frac{(x+3)(x+2)}{x(x+3)}=\lim_{x\rightarrow -3} \frac{x+2}{x}=\frac{1}{3}\)

Câu c:

\(\lim_{x\rightarrow 4^-}\frac{2x-5}{x-4}=-\infty\)

Câu d:

\(\lim_{x\rightarrow +\infty } (-x^3+x^2-2x+1)=-\infty\)

Câu e:

\(\lim_{x\rightarrow -\infty } \frac{x+3}{3x-1}= \lim_{x\rightarrow -\infty }\frac{1+\frac{3}{x}}{3-\frac{1}{x}}=\frac{1}{3}.\)

Câu f:

\(\lim_{x\rightarrow -\infty } \frac{\sqrt{x^2-2x+4}-x}{3x-1} \lim_{x\rightarrow -\infty }= \frac{\left | x \right |\sqrt{1-\frac{2}{x}+\frac{4}{x^2}}-x}{3x-1}\)

\(=\lim_{x\rightarrow -\infty } \frac{-x\left ( \sqrt{1-\frac{2}{x}+\frac{4}{x^2}}+1 \right )}{3x-1}=-\frac{2}{3}.\)

 

-- Mod Toán 11

Copyright © 2021 HOCTAP247