Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - \sqrt 2 } \frac{{{x^3} + 2\sqrt 2 }}{{{x^2} - 2}}\)
b) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^4} - 27x}}{{2{x^2} - 3x - 9}}\)
c) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^4} - 16}}{{{x^2} + 6x + 8}}\)
d) \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{\sqrt {1 - x} + x - 1}}{{\sqrt {{x^2} - {x^3}} }}\)
a)
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to - \sqrt 2 } \frac{{{x^3} + 2\sqrt 2 }}{{{x^2} - 2}} = \mathop {\lim }\limits_{x \to - \sqrt 2 } \frac{{{x^3} + {{\left( {\sqrt 2 } \right)}^3}}}{{{x^2} - {{\left( {\sqrt 2 } \right)}^2}}}\\
= \mathop {\lim }\limits_{x \to - \sqrt 2 } \frac{{\left( {x + \sqrt 2 } \right)\left( {{x^2} - x\sqrt 2 + 2} \right)}}{{\left( {x + \sqrt 2 } \right)\left( {x - \sqrt 2 } \right)}}\\
= \mathop {\lim }\limits_{x \to - \sqrt 2 } \frac{{{x^2} - x\sqrt 2 + 2}}{{x - \sqrt 2 }} = \frac{{ - 3\sqrt 2 }}{2}
\end{array}\)
b)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\mathop {\lim }\limits_{x \to 3} \frac{{{x^4} - 27x}}{{2{x^2} - 3x - 9}}\\
= \mathop {\lim }\limits_{x \to 3} \frac{{x\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right)}}{{\left( {x - 3} \right)\left( {2x + 3} \right)}}
\end{array}\\
{ = \mathop {\lim }\limits_{x \to 3} \frac{{x\left( {{x^2} + 3x + 9} \right)}}{{2x + 3}} = 9}
\end{array}\)
c)
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to - 2} \frac{{{x^4} - 16}}{{{x^2} + 6x + 8}}\\
= \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {{x^2} + 4} \right)\left( {{x^2} - 4} \right)}}{{\left( {x + 2} \right)\left( {x + 4} \right)}}\\
= \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {{x^2} + 4} \right)\left( {x - 2} \right)}}{{x + 4}} = - 16
\end{array}\)
d)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\mathop {\lim }\limits_{x \to {1^ - }} \frac{{\sqrt {1 - x} + x - 1}}{{\sqrt {{x^2} - {x^3}} }}\\
= \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\sqrt {1 - x} - \left( {1 - x} \right)}}{{\left| x \right|\sqrt {1 - x} }}
\end{array}\\
{ = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{1 - \sqrt {1 - x} }}{{\left| x \right|}} = 1}
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247