Tính các giới hạn sau:
a) \(\underset{x\rightarrow -3}{lim} \frac{x^{2 }-1}{x+1}\);
b) \(\underset{x\rightarrow -2}{lim}\frac{4-x^{2}}{x + 2}\);
c) \(\underset{x\rightarrow 6}{lim} \frac{\sqrt{x + 3}-3}{x-6}\);
d) \(\underset{x\rightarrow +\infty }{lim} \frac{2x-6}{4-x}\);
e) \(\underset{x\rightarrow +\infty }{lim} \frac{17}{x^{2}+1}\);
f) \(\underset{x\rightarrow +\infty }{lim} \frac{-2x^{2}+x -1}{3 +x}\).
Câu a:
\(\underset{x\rightarrow -3}{lim}\frac{x^{2 }-1}{x+1}=\frac{(-3)^{2}-1}{-3 +1}=-4\)
Câu b:
\(\underset{x\rightarrow -2}{lim}\frac{4-x^{2}}{x + 2} =\underset{x\rightarrow -2}{lim}\frac{ (2-x)(2+x)}{x + 2}= \underset{x\rightarrow -2}{lim} (2-x) = 4.\)
Câu c:
\(\underset{x\rightarrow 6}{lim} \frac{\sqrt{x + 3}-3}{x-6} = \underset{x\rightarrow 6}{lim}\)
=\(\underset{x\rightarrow 6}{lim}\) = \(\underset{x\rightarrow 6}{lim}\)
=
.
Câu d:
\(\underset{x\rightarrow +\infty }{lim}\frac{2x-6}{4-x}=\underset{x\rightarrow +\infty }{lim}\frac{2-\frac{6}{x}}{\frac{4}{x}-1} = -2.\)
Câu e:
\(\underset{x\rightarrow +\infty }{lim}\frac{17}{x^{2}+1}=\underset{x\rightarrow +\infty }{lim} \frac{\frac{17}{x^2}}{1+\frac{1}{x^2}}=0.\)
Câu f:
\(\underset{x\rightarrow +\infty }{lim}\frac{-2x^{2}+x -1}{3 +x}=\) \(\underset{x\rightarrow +\infty }{lim}\frac{-2+\frac{1}{x} -\frac{1}{x^{2}}}{\frac{3}{x^{2}} +\frac{1}{x}}=-\infty\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247