Tìm các giới hạn sau (nếu có):
a. \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{\left| {x - 2} \right|}}{{x - 2}}\)
b. \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{\left| {x - 2} \right|}}{{x - 2}}\)
c. \(\mathop {\lim }\limits_{x \to 2} \frac{{\left| {x - 2} \right|}}{{x - 2}}\)
a) Với mọi x > 2, ta có |x−2| = x−2. Do đó:
\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{\left| {x - 2} \right|}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} 1 = 1\)
b) Với mọi x < 2, ta có |x–2| = 2–x. Do đó:
\(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{\left| {x - 2} \right|}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{ - \left( {x - 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} - 1 = - 1\)
c) Vì \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{\left| {x - 2} \right|}}{{x - 2}} \ne \mathop {\lim }\limits_{x \to {2^ - }} \frac{{\left| {x - 2} \right|}}{{x - 2}}\)
Nên không tồn tại \(\mathop {\lim }\limits_{x \to 2} \frac{{\left| {x - 2} \right|}}{{x - 2}}\).
-- Mod Toán 11
Copyright © 2021 HOCTAP247