Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - \infty } \left( {3{x^3} - 5{x^2} + 7} \right)\)
b) \(\mathop {\lim }\limits_{x \to + \infty } \sqrt {2{x^4} - 3x + 12} \)
a)
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to - \infty } \left( {3{x^3} - 5{x^2} + 7} \right)\\
= \mathop {\lim }\limits_{x \to - \infty } {x^3}\left( {3 - \frac{5}{x} + \frac{7}{{{x^3}}}} \right) = - \infty
\end{array}\)
(vì \(\mathop {\lim }\limits_{x \to - \infty } {x^3} = - \infty ,\mathop {\lim }\limits_{x \to - \infty } \left( {3 - \frac{5}{x} + \frac{7}{{{x^3}}}} \right) = 3 > 0\))
b)
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to + \infty } \sqrt {2{x^4} - 3x + 12} \\
= \mathop {\lim }\limits_{x \to + \infty } {x^2}\sqrt {2 - \frac{3}{{{x^3}}} + \frac{{12}}{{{x^4}}}} = + \infty
\end{array}\)
(vì \(\mathop {\lim }\limits_{x \to + \infty } {x^2} = + \infty ,\mathop {\lim }\limits_{x \to + \infty } \sqrt {2 - \frac{3}{{{x^3}}} + \frac{{12}}{{{x^4}}}} = \sqrt 2 > 0\)).
-- Mod Toán 11
Copyright © 2021 HOCTAP247