Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to + \infty } \sqrt[3]{{\frac{{2{x^5} + {x^3} - 1}}{{\left( {2{x^2} - 1} \right)\left( {{x^3} + x} \right)}}}}\)
b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{2\left| x \right| + 3}}{{\sqrt {{x^2} + x + 5} }}\)
c) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + x} + 2x}}{{2x + 3}}\)
d) \(\mathop {\lim }\limits_{x \to + \infty } \left( {x + 1} \right)\sqrt {\frac{x}{{2{x^4} + {x^2} + 1}}} \)
a)
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to + \infty } \sqrt[3]{{\frac{{2{x^5} + {x^3} - 1}}{{\left( {2{x^2} - 1} \right)\left( {{x^3} + x} \right)}}}}\\
= \sqrt[3]{{\frac{{2 + \frac{1}{{{x^2}}} - \frac{1}{{{x^5}}}}}{{\left( {2 - \frac{1}{{{x^2}}}} \right)\left( {1 + \frac{1}{{{x^2}}}} \right)}}}} = 1
\end{array}\)
b)
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to - \infty } \frac{{2\left| x \right| + 3}}{{\sqrt {{x^2} + x + 5} }} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2\left| x \right| + 3}}{{\left| x \right|\sqrt {1 + \frac{1}{x} + \frac{5}{{{x^2}}}} }}\\
= \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2x + 3}}{{ - x\sqrt {1 + \frac{1}{x} + \frac{5}{{{x^2}}}} }} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 - \frac{3}{x}}}{{\sqrt {1 + \frac{1}{x} + \frac{5}{{{x^2}}}} }} = 2
\end{array}\)
c) \({x^2} + x \ge 0 \Leftrightarrow x \le - 1 \vee x \ge 0\)
\(\begin{array}{l}
\frac{{\sqrt {{x^2} + x} + 2x}}{{2x + 3}} = \frac{{\left| x \right|\sqrt {1 + \frac{1}{x}} + 2x}}{{2x + 3}}\\
= \frac{{ - \sqrt {1 + \frac{1}{x}} + 2x}}{{2 + \frac{3}{x}}}
\end{array}\)
Với mọi \(x \le - 1,x \ne - \frac{3}{2}\)
Do đó \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + x} + 2x}}{{2x + 3}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {1 + \frac{1}{x}} + 2}}{{2 + \frac{3}{x}}} = \frac{1}{2}\)
d)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\mathop {\lim }\limits_{x \to + \infty } \left( {x + 1} \right)\sqrt {\frac{x}{{2{x^4} + {x^2} + 1}}} \\
= \mathop {\lim }\limits_{x \to + \infty } \sqrt {\frac{{x{{\left( {x + 1} \right)}^2}}}{{2{x^4} + {x^2} + 1}}}
\end{array}\\
{ = \mathop {\lim }\limits_{x \to + \infty } \sqrt {\frac{{\frac{1}{x} + \frac{2}{{{x^2}}} + \frac{1}{{{x^3}}}}}{{2 + \frac{1}{{{x^2}}} + \frac{1}{{{x^4}}}}}} = 0}
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247