Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}}\)
b) \(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} \frac{{2{x^2} + 5x - 3}}{{{{\left( {x + 3} \right)}^2}}}\)
c) \(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} \frac{{2{x^2} + 5x - 3}}{{{{\left( {x + 3} \right)}^2}}}\)
d) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^3} + 1} - 1}}{{{x^2} + x}}\)
a)
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\
= \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + 2x + 4}}{{x + 2}} = 3
\end{array}\)
b)
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} \frac{{2{x^2} + 5x - 3}}{{{{\left( {x + 3} \right)}^2}}} = \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} \frac{{\left( {x + 3} \right)\left( {2x - 1} \right)}}{{{{\left( {x + 3} \right)}^2}}}\\
= \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} \frac{{2x - 1}}{{x + 3}} = - \infty
\end{array}\)
vì \(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} \left( {2x - 1} \right) = - 7 < 0,\)
\(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} \left( {x + 3} \right) = 0\) và x + 3 > 0.
c)
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} \frac{{2{x^2} + 5x - 3}}{{{{\left( {x + 3} \right)}^2}}} = \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} \frac{{\left( {x + 3} \right)\left( {2x - 1} \right)}}{{{{\left( {x + 3} \right)}^2}}}\\
= \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} \frac{{2x - 1}}{{x + 3}} = + \infty
\end{array}\)
(vì \(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} \left( {2x - 1} \right) = - 7 < 0,\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} \left( {x + 3} \right) = 0\) và x - 3 < 0)
d)
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^3} + 1} - 1}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^3}}}{{x\left( {x + 1} \right)\left( {\sqrt {{x^3} + 1} + 1} \right)}}\\
= \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{\left( {x + 1} \right)\left( {\sqrt {{x^3} + 1} + 1} \right)}} = 0
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247