Tính:
a) \(\mathop {\lim }\limits_{x \to 1} \left[ {\frac{2}{{{{\left( {x - 1} \right)}^2}}}.\frac{{2x + 1}}{{2x - 3}}} \right]\)
b) \(\mathop {\lim }\limits_{x \to 1} \frac{5}{{\left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right)}}\)
a) Ta có \(\mathop {\lim }\limits_{x \to 1} \frac{2}{{{{\left( {x - 1} \right)}^2}}} = + \infty \) và \(\mathop {\lim }\limits_{x \to 1} \frac{{2x + 1}}{{2x - 3}} = \frac{3}{{ - 1}} = - 3 < 0\)
Do đó \(\mathop {\lim }\limits_{x \to 1} \left[ {\frac{2}{{{{\left( {x - 1} \right)}^2}}}.\frac{{2x + 1}}{{2x - 3}}} \right] = - \infty \)
b) Ta có \(\frac{5}{{\left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right)}} = \frac{1}{{{{\left( {x - 1} \right)}^2}}}.\frac{5}{{x - 2}}\)
Vì \(\mathop {\lim }\limits_{x \to 1} \frac{1}{{{{\left( {x - 1} \right)}^2}}} = + \infty ,\mathop {\lim }\limits_{x \to 1} \frac{5}{{x - 2}} = - 5 < 0\)
Do đó \(\mathop {\lim }\limits_{x \to 1} \frac{5}{{\left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right)}} = - \infty \)
-- Mod Toán 11
Copyright © 2021 HOCTAP247