Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - \infty } \sqrt[3]{{\frac{{{x^2} + 2x}}{{8{x^2} - x + 3}}}}\)
b) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt x }}{{{x^2} - x + 2}}\)
a)
\(\mathop {\lim }\limits_{x \to - \infty } \sqrt[3]{{\frac{{{x^2} + 2x}}{{8{x^2} - x + 3}}}} = \mathop {\lim }\limits_{x \to - \infty } \sqrt[3]{{\frac{{1 + \frac{2}{x}}}{{8 - \frac{1}{x} + \frac{3}{{{x^2}}}}}}} = \frac{1}{2}\)
b)
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt x }}{{{x^2} - x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt x }}{{{x^2}\left( {1 - \frac{1}{x} + \frac{2}{{{x^2}}}} \right)}}\\
= \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{\sqrt x \left( {1 - \frac{1}{x} + \frac{2}{{{x^2}}}} \right)}} = 0
\end{array}\)
(vì \(\mathop {\lim }\limits_{x \to + \infty } \frac{1}{{\sqrt x }} = 0,\mathop {\lim }\limits_{x \to + \infty } \frac{1}{{1 - \frac{1}{x} + \frac{2}{{{x^2}}}}} = 1\))
-- Mod Toán 11
Copyright © 2021 HOCTAP247