Bài tập 24 trang 24 SGK Hình học 10 NC

Lý thuyết Bài tập
Câu hỏi:

Bài tập 24 trang 24 SGK Hình học 10 NC

Cho tam giác ABC và điểm G. Chứng minh rằng

a) Nếu \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \) thì G là trọng tâm tam giác ABC;

b) Nếu có điểm O sao cho \(\overrightarrow {OG}  = \frac{1}{3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)\) thì G là trọng tâm tam giác ABC.

a) Gọi G1 là trọng tâm tam giác ABC.

Từ đó, ta có \({\overrightarrow {{G_1}A}  + \overrightarrow {{G_1}B}  + \overrightarrow {{G_1}C}  = \overrightarrow 0 }\).

Theo giả thiết, \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \) 

\(\begin{array}{l}
 \Rightarrow \overrightarrow {G{G_1}}  + \overrightarrow {{G_1}A}  + \overrightarrow {{G_1}B}  + \overrightarrow {{G_1}C}  = \overrightarrow 0 \\
 \Rightarrow 3\overrightarrow {G{G_1}}  + \left( {\overrightarrow {{G_1}A}  + \overrightarrow {{G_1}B}  + \overrightarrow {{G_1}C} } \right) = \overrightarrow 0 \\
 \Rightarrow 3\overrightarrow {G{G_1}}  = \overrightarrow 0 \\
 \Rightarrow \overrightarrow {G{G_1}}  = \overrightarrow 0 
\end{array}\)

\( \Rightarrow G \equiv {G_1}\)

b) Gọi G1 là trọng tâm tam giác ABC.

Từ đó, ta có \({\overrightarrow {{G_1}A}  + \overrightarrow {{G_1}B}  + \overrightarrow {{G_1}C}  = \overrightarrow 0 }\).

\(\begin{array}{l}
\overrightarrow {OG}  = \frac{1}{3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)\\
 = \frac{1}{3}\left( {3\overrightarrow {O{G_1}}  + \overrightarrow {{G_1}A}  + \overrightarrow {{G_1}B}  + \overrightarrow {{G_1}C} } \right) = \overrightarrow {O{G_1}} \\
 \Rightarrow G \equiv {G_1}
\end{array}\)

 

-- Mod Toán 10

Copyright © 2021 HOCTAP247