Bài tập 26 trang 24 SGK Hình học 10 NC

Lý thuyết Bài tập
Câu hỏi:

Bài tập 26 trang 24 SGK Hình học 10 NC

Chứng minh rằng nếu G và G′ lần lượt là trọng tâm tam giác ABC và tam giác A′B′C′ thì

\(3\overrightarrow {GG'}  = \overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'} \)

Từ đó hãy suy ra điều kiện cần và đủ để hai tam giác ABC và A′B′C′ có trọng tâm trùng nhau.

Vì G là trọng tâm tam giác ABC nên:

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

Vì G′ là trọng tâm tam giác A′B′C′ nên:

\(\overrightarrow {G'A'}  + \overrightarrow {G'B'}  + \overrightarrow {G'C'}  = \overrightarrow 0 \)

Áp dụng quy tắc ba điểm, ta có:

\(\begin{array}{*{20}{l}}
{\overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'} }\\
\begin{array}{l}
 = \left( {\overrightarrow {AG}  + \overrightarrow {GG'}  + \overrightarrow {G'A'} } \right) + \left( {\overrightarrow {BG}  + \overrightarrow {GG'}  + \overrightarrow {G'B'} } \right)\\
 + \left( {\overrightarrow {CG}  + \overrightarrow {GG'}  + \overrightarrow {G'C'} } \right)
\end{array}\\
\begin{array}{l}
 = 3\overrightarrow {GG'}  + \left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right)\\
 + \left( {\overrightarrow {G'A'}  + \overrightarrow {G'B'}  + \overrightarrow {G'C'} } \right) = 3\overrightarrow {GG'} 
\end{array}
\end{array}\)

Vậy điều kiện cần và đủ để hai tam giác ABCvà A′B′C′′ có trọng tâm trùng nhau là 

\(\overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'}  = \overrightarrow 0 \)

 

-- Mod Toán 10

Copyright © 2021 HOCTAP247