Cho \(\overrightarrow{a}\), \(\overrightarrow{b}\) là hai vectơ khác\(\overrightarrow{0}\). Khi nào có đẳng thức
a) \(\left| {\vec a + \vec b} \right| = \left| {\vec a} \right| + \left| {\vec b} \right|;\)
b) \(\left| {\vec a + \vec b} \right|\,\, = \,\,\left| {\vec a - \vec b} \right|\)
Câu a:
Dựng \(\overrightarrow {OA} = \vec a;\,\overrightarrow {AB} = \vec b,\) khi đó \(\vec a + \vec b = \overrightarrow {OB} \)
\( \Rightarrow \left| {\vec a + \vec b} \right|\,\, = \,\,\left| {\overrightarrow {OB} } \right|\)
Ta có: \(\left| {\vec a + \vec b} \right|\,\, = \,\,\left| {\vec a} \right|\, + \left| {\vec b} \right|\)
\( \Leftrightarrow OB = OA + AB \Leftrightarrow \vec a,\vec b\) cùng hướng.
Câu b:
Từ điểm O ta dựng \(\overrightarrow {OA} = \vec a,\overrightarrow {AB} = \vec b,\,\overrightarrow {AC} = - \vec b\) khi đó
\(\vec a + \vec b = \overrightarrow {OA} + \overrightarrow {AB} = \overrightarrow {OB} \)
\(\vec a - \vec b = \vec a + ( - \vec b) = \overrightarrow {OA} + \overrightarrow {AC} = \overrightarrow {OC} \)
Vì \(\left| {\vec a + \vec b} \right|\,\, = \,\,\left| {\vec a - \vec b} \right|\,\)nên OB = OC.
Chú ý rằng B, A, C thẳng hàng nên OBC là tam giác cân với OA là trung tuyến suy ra OA là đường cao hay \(OA \bot AB\)
\( \Leftrightarrow \vec a \bot \vec b\)(Chú ý rằng trường hợp \(\vec a,\vec b\) cùng phương không thể xảy ra với đẳng thức trên).
-- Mod Toán 10
Copyright © 2021 HOCTAP247