Bài tập 7 trang 27 SGK Hình học 10

Lý thuyết Bài tập
Câu hỏi:

Bài tập 7 trang 27 SGK Hình học 10

Các điểm A'(-4; 1), B'(2;4), C(2, -2) lần lượt là trung điểm của các cạnh BC, CA và AB của tam giác ABC. Tính tọa độ các đỉnh của tam giác ABC. Chứng minh trọng tâm của các tam giác ABC và A'B'C' trùng nhau.

A' là trung điểm của cạnh BC nên -4 = \(\frac{1}{2}\) (xB+ xC)

⇒ xB+ x= -8                        (1)

Tương tự ta có  xA+ x= 4         (2)

                       xB+ xC = 4          (3)  

⇒  xA+ xB+ xC =0                            (4)

Kết hợp (4) và (1) ta có:  xA= 8

             (4) và (2) ta có:  xB= -4

               (4) và (3) ta có: xC = -4

Tương tự ta tính được: yA = 1; yB = -5; yC = 7.

Vậy A(8;1), B(-4;-5), C(-4; 7).

Gọi G la trọng tâm tam giác ABC thì 

x= \(\frac{{8 - 4 - 4}}{3}\)= 0;        yG = \(\frac{{1 - 5 +7}}{3}\)  = 1  ⇒ G(0,1).

xG’ = \(\frac{{-4 +2+2}}{3}\);         yG’ = \(\frac{{1+4-2}}{3}\)  = 1 ⇒ G'(0;1)

Rõ ràng G và G' trùng nhau.

 

-- Mod Toán 10

Copyright © 2021 HOCTAP247