Bài tập 1.9 trang 106 SBT Toán 9 Tập 1

Lý thuyết Bài tập
Câu hỏi:

Bài tập 1.9 trang 106 SBT Toán 9 Tập 1

Cho tam giác ABC vuông cân tại A, đường trung tuyến BM. Gọi D là chân đường vuông góc kẻ từ C đến BM và H là chân đường vuông góc kẻ từ D đến AC. Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Tại sao?

a) ΔHCD ∼ ΔABM.

b) AH = 2HD.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a) Hai tam giác vuông HCD và DCM đồng dạng (có cùng góc nhọn tại C) mà

ΔDCM ∼ ΔABM (vì là hai tam giác vuông có ∠(DMC) = ∠(AMB), vậy ΔHCD ∼ ΔABM. Khẳng định a) là đúng.

b) Theo câu a), từ AB = 2AM, suy ra HC = 2HD. Ta có HC < MC (h là chân đường cao hạ từ D của tam giác DCM vuông tại D) nên HC = 2HD < MC = AM < AH (do M nằm giữa A và H), vì thế 2HD không thể bằng AH. Khẳng định b) là sai.

 

-- Mod Toán 9

Copyright © 2021 HOCTAP247