Cho tam giác ABC có AB = 6cm, AC = 4,5cm, BC = 7,5cm.
a. Chứng minh tam giác ABC vuông ở A. Tính các góc B, C và đường cao AH của tam giác
b. Tìm tập hợp các điểm M sao cho SABC = SBMC
a. Ta có: AB2 = 62 = 36
AC2 = 4,52 = 20,25
BC2 = 7,52 = 56,25
Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)
Kẻ AH ⊥ BC
Ta có: AH.BC = AB.AC
b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.
-- Mod Toán 9
Copyright © 2021 HOCTAP247