Cho tổng \(A = \frac{1}{{10}} + \frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{99}} + \frac{1}{{100}}\)
Chứng tỏ rằng A > 1
\(\begin{array}{l}
A = \frac{1}{{10}} + \left( {\frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{99}} + \frac{1}{{100}}} \right)\\
A > \frac{1}{{10}} + \underbrace {\left( {\frac{1}{{100}} + \frac{1}{{100}} + ... + \frac{1}{{100}} + \frac{1}{{100}}} \right)}_{90P/S}\\
A > \frac{1}{{10}} + \frac{{90}}{{100}} = 1
\end{array}\)
Vậy A > 1
-- Mod Toán 6
Copyright © 2021 HOCTAP247