Chứng minh rằng: \(S = \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{20}}}} < 1\)
Ta có \(S = \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{20}}}}\)
Nên \(2S = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{19}}}}\)
Do đó \(2S - S = 1 - \frac{1}{{{2^{20}}}}\)
Vậy \(S = 1 - \frac{1}{{{2^{20}}}} < 1\)
-- Mod Toán 6
Copyright © 2021 HOCTAP247