Chứng minh:
\(S = \frac{1}{5} + \frac{1}{{13}} + \frac{1}{{14}} + \frac{1}{{15}} + \frac{1}{{61}} + \frac{1}{{62}} + \frac{1}{{63}} < \frac{1}{2}\)
Ta có:
\(S = \frac{1}{5} + \left( {\frac{1}{{13}} + \frac{1}{{14}} + \frac{1}{{15}}} \right) + \left( {\frac{1}{{61}} + \frac{1}{{62}} + \frac{1}{{63}}} \right)\)
\(\begin{array}{l}
\frac{1}{{13}} + \frac{1}{{14}} + \frac{1}{{15}} < \frac{1}{{12}} + \frac{1}{{12}} + \frac{1}{{12}} = \frac{1}{4}\left( 1 \right)\\
\frac{1}{{61}} + \frac{1}{{62}} + \frac{1}{{63}} < \frac{1}{{60}} + \frac{1}{{60}} + \frac{1}{{60}} = \frac{1}{{20}}\left( 2 \right)\\
\frac{1}{5} + \frac{1}{4} + \frac{1}{{20}} = \frac{4}{{20}} + \frac{5}{{20}} + \frac{1}{{20}}\\
= \frac{{10}}{{20}} = \frac{1}{2}\left( 3 \right)
\end{array}\)
Từ (1), (2) và (3) suy ra
\(\begin{array}{l}
S = \frac{1}{5} + \frac{1}{{13}} + \frac{1}{{14}} + \frac{1}{{15}} + \frac{1}{{61}} + \frac{1}{{62}} + \frac{1}{{63}}\\
< \frac{1}{5} + \frac{1}{4} + \frac{1}{{20}} = \frac{1}{2}
\end{array}\)
-- Mod Toán 6
Copyright © 2021 HOCTAP247