A. - 1
B. - 2
C. 1
D. 0
A. (-1;0)
B. (-1;1)
C. \(\left( { - 1; + \infty } \right)\)
D. (0;1)
A. \(y = {x^3} - 3x + 1\)
B. \(y = {x^3} - 3x\)
C. \(y = - {x^3} + 3x + 1\)
D. \(y = {x^3} - 3x + 3\)
A. 2
B. 1
C. 3
D. 5
A. \(\ln a + \ln b - \ln \left( {a + 1} \right)\)
B. \(\ln a + 2\ln b + \ln \left( {a + 1} \right)\)
C. \(\ln a + 2\ln b - \ln \left( {a + 1} \right)\)
D. \(2\ln b\)
A. \(\left\{ {0; \frac{1}{2}} \right\}\)
B. {0}
C. \(\left\{ { - \frac{1}{2}} \right\}\)
D. \(\left\{ {0; - \frac{1}{2}} \right\}\)
A. 2
B. 4
C. 3
D. 1
A. 6
B. 10
C. 18
D. 0
A. \(F\left( x \right) = \frac{{{e^{2x}}}}{2} + \frac{{{x^3}}}{3} + C\)
B. \(F\left( x \right) = {e^{2x}} + {x^3} + C\)
C. \(F\left( x \right) = 2{e^{2x}} + 2x + C\)
D. \(F\left( x \right) = {e^{2x}} + \frac{{{x^3}}}{3} + C\)
A. 19
B. \(\sqrt {19} \)
C. \(\sqrt {13} \)
D. 13
A. x = 0
B. y = 0
C. x + y = 0
D. z = 0
A. \(\left( {2;1;3} \right)\)
B. \(\left( {3;1;2} \right)\)
C. \(\left( {3;1;3} \right)\)
D. \(\left( {3;2;3} \right)\)
A. \(6{a^3}\)
B. \(3{a^3}\)
C. \({a^3}\)
D. \(2{a^3}\)
A. 10
B. \(400{a^3}{b^2}\)
C. \(10{a^3}{b^2}\)
D. 40
A. \(\left( {1; + \infty } \right)\)
B. \(\left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\)
C. \(\left( { - \infty ;1} \right)\)
D. (-1;1)
A. \(\frac{{\pi {a^3}\sqrt 2 }}{3}\)
B. \(\frac{{\pi {a^3}}}{3}\)
C. \(\frac{{\pi {a^3}\sqrt 3 }}{3}\)
D. \(\frac{{\pi {a^3}}}{{3\sqrt 3 }}\)
A. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 4\)
B. \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 2\)
C. \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 4\)
D. \({x^2} + {y^2} + {z^2} = 2\)
A. \(1 < x < 3\)
B. \( - 1 < x < 3\)
C. \(x < - 3;x > 1\)
D. \( - 3 < x < 1\)
A. \(y' = \left( {1 + x} \right){e^{x + 1}}\)
B. \(y' = \left( {1 - x} \right){e^{x + 1}}\)
C. \(y' = {e^{x + 1}}\)
D. \(y' = x{e^x}\)
A. \(\frac{1}{{2a}} + \frac{1}{4}\)
B. \(\frac{1}{2}a + \frac{1}{4}\)
C. \(\frac{{a + 1}}{4}\)
D. \(\frac{{a + 2}}{{4a}}\)
A. \({a^3}\)
B. \(6{a^3}\)
C. \(\frac{{\sqrt 2 }}{{12}}{a^3}\)
D. \(\frac{1}{{12}}{a^3}\)
A. - 1
B. 1
C. 0
D. 3
A. 3
B. 2
C. 1
D. 0
A. \(m \ge 0\)
B. \(m < \frac{1}{2}\)
C. \(m \ge \frac{1}{2}\)
D. \(m = \frac{1}{2}\)
A. \(y' = \frac{{3{x^2} - 1}}{{\left( {{x^3} - x} \right)}}\)
B. \(y' = \frac{{3{x^2} - 1}}{{\left( {{x^3} - x} \right)\ln 3}}\)
C. \(y' = \frac{1}{{\left( {{x^3} - x} \right)\ln 3}}\)
D. \(y' = \frac{{3x - 1}}{{\left( {{x^3} - x} \right)\ln 3}}\)
A. 701,12.
B. 701.
C. 701,19.
D. 701,47.
A. \(F\left( x \right) = - \cos x + \ln x + C\)
B. \(F\left( x \right) = - \cos x + \frac{{{x^2}}}{2}\ln x - \frac{{{x^2}}}{4} + C\)
C. \(F\left( x \right) = \cos x + \frac{{{x^2}}}{2}\ln x - \frac{{{x^2}}}{4} + C\)
D. \(F\left( x \right) = - \cos x + C\)
A. \(\frac{1}{{12}}\)
B. \(\frac{5}{{12}}\)
C. \( - \frac{1}{3}\)
D. \(\frac{1}{4}\)
A. \(x + 2y + 2z + 3 = 0;x + 2y + 2z - 17 = 0\)
B. \(x + 2y + 2z + 3 = 0;x + 2y + 2z + 17 = 0\)
C. \(x + 2y + 2z - 3 = 0;x + 2y + 2z - 17 = 0\)
D. \(x + 2y + 2z - 3 = 0;x + 2y + 2z + 17 = 0\)
A. \(0,34\pi\)
B. \(0,16\pi\)
C. \(0,32\pi\)
D. \(0,4\pi\)
A. \({2.5^7}\)
B. \({2.5^6}\)
C. \({2.5^8}\)
D. \({2.5^5}\)
A. \(60^0\)
B. \(30^0\)
C. \(45^0\)
D. \(90^0\)
A. m < 0
B. \(m \in R\)
C. Không tồn tại m.
D. m > 0
A. [0;4]
B. \(\left\{ 0 \right\} \cup \left( {4; + \infty } \right)\)
C. \(\left[ {4; + \infty } \right)\)
D. {0;4}
A. \(m \le 2\)
B. \(m \le - \frac{1}{4}\)
C. \(m \le 6\)
D. \(m \le 1\)
A. \(m<2\)
B. \(m \in R\)
C. \(m \le 2\)
D. Không tồn tại m
A. \(I = \int\limits_{ - 1}^2 {\left[ {g\left( x \right) - f\left( x \right)} \right]dx} \)
B. \(I = \int\limits_{ - 1}^2 {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx\)
C. \(I = \int\limits_{ - 1}^2 {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx\)
D. \(I = \int\limits_{ - 1}^2 {\left[ {\left| {f\left( x \right)} \right| - \left| {g\left( x \right)} \right|} \right]} dx\)
A. \(m \ge 2\)
B. \(m \in R\)
C. \(m=0\)
D. \(m \ge 2;m \le - 2\)
A. \(\ln \left| {\frac{{{e^x} - 1}}{{{e^x} + 2}}} \right| + C\)
B. \(\ln \left( {{e^x} - 2{e^{ - x}} + 1} \right) + C\)
C. \(\frac{1}{3}\ln \frac{{{e^x} - 1}}{{{e^x} + 2}} + C\)
D. \(\frac{1}{3}\ln \left| {\frac{{{e^x} - 1}}{{{e^x} + 2}}} \right| + C\)
A. \(\frac{{x + 1}}{1} = \frac{{y + 1}}{{ - 2}} = \frac{{z + 1}}{7}\)
B. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{7}\)
C. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{7}\)
D. \(\frac{{x + 1}}{1} = \frac{{y + 1}}{2} = \frac{{z + 1}}{7}\)
A. \(\frac{{\sqrt 2 }}{2}a\)
B. \(\frac{{2\sqrt {21} }}{7}a\)
C. \(\frac{{\sqrt {21} }}{7}a\)
D. \(\frac{{\sqrt {21} }}{{14}}a\)
A. \(\frac{2}{3}V\)
B. \(\frac{1}{3}V\)
C. \(\frac{1}{2}V\)
D. \(\frac{3}{4}V\)
A. \(\frac{{8\pi {R^3}\sqrt 3 }}{3}\)
B. \(\frac{{4\pi {R^3}\sqrt 3 }}{9}\)
C. \(\frac{{8\pi {R^3}}}{{27}}\)
D. \(\frac{{8\pi {R^3}\sqrt 3 }}{9}\)
A. \(m \le 0\)
B. \(m<0\)
C. \(m \ge 0\)
D. \(m>0\)
A. \(\left( {\frac{4}{9};\frac{2}{9};\frac{4}{9}} \right)\)
B. (2;1;2)
C. (4;2;4)
D. \(\left( {\frac{2}{9};\frac{1}{9};\frac{2}{9}} \right)\)
A. \(m < \frac{{f\left( 1 \right) + 9}}{{36}}\)
B. \(m \le \frac{{f\left( 0 \right)}}{{36}} + \frac{1}{{\sqrt 3 + 2}}\)
C. \(m \le \frac{{f\left( 1 \right) + 9}}{{36}}\)
D. \(m < \frac{{f\left( 0 \right)}}{{36}} + \frac{1}{{\sqrt 3 + 2}}\)
A. (-1;0)
B. (-6;-3)
C. (3;6)
D. \(\left( {6; + \infty } \right)\)
A. 8
B. 0
C. 10
D. 12
A. 0
B. \(\frac{2}{3}\)
C. \(\frac{4}{3}\)
D. \(\sqrt 2 \)
A. \(\frac{1}{{252}}\)
B. \(\frac{1}{{63}}\)
C. \(\frac{1}{{192}}\)
D. \(\frac{1}{{126}}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247