Giải các phương trình sau:
a) \(\sin 4x = \sin \frac{\pi }{5}\)
b) \(\sin \left( {\frac{{x + \pi }}{5}} \right) = - \frac{1}{2}\)
c) \(\cos \frac{x}{2} = \cos \sqrt 2 \)
d) \(\cos \left( {x + \frac{\pi }{{18}}} \right) = \frac{2}{5}\)
a)
\(\begin{array}{l}
\sin 4x = \sin \frac{\pi }{5} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{4x = \frac{\pi }{5} + k2\pi }\\
{4x = \pi - \frac{\pi }{5} + k2\pi }
\end{array}} \right.\left( {k \in Z} \right)\\
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = \frac{\pi }{{20}} + k\frac{\pi }{2}}\\
{x = \frac{\pi }{5} + k\frac{\pi }{2}}
\end{array}} \right.\left( {k \in Z} \right)
\end{array}\)
b)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\sin \left( {\frac{{x + \pi }}{5}} \right) = - \frac{1}{2}\\
\Leftrightarrow \sin \left( {\frac{{x + \pi }}{5}} \right) = \sin \left( { - \frac{\pi }{6}} \right)
\end{array}\\
\begin{array}{l}
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{\frac{{x + \pi }}{5} = - \frac{\pi }{6} + k2\pi }\\
{\frac{{x + \pi }}{5} = \pi + \frac{\pi }{6} + k2\pi }
\end{array}} \right.\\
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = - \frac{{11\pi }}{6} + k10\pi }\\
{x = \frac{{29\pi }}{6} + k10\pi }
\end{array}} \right.
\end{array}
\end{array}\)
c)
\(\begin{array}{l}
\cos \frac{x}{2} = \cos \sqrt 2 \Leftrightarrow \frac{x}{2} = \pm \sqrt 2 + k2\pi \\
\Leftrightarrow x = \pm 2\sqrt 2 + k4\pi \left( {k \in Z} \right)
\end{array}\)
d) Vì \(0 < \frac{2}{5} < 1\) nên có số \(\alpha \) sao cho \(\cos \alpha = \frac{2}{5}\).
Do đó:
\(\begin{array}{l}
(\cos \left( {x + \frac{\pi }{{18}}} \right) = \frac{2}{5} \Leftrightarrow \cos \left( {x + \frac{\pi }{{18}}} \right) = \cos \alpha \\
\Leftrightarrow x = \pm \alpha - \frac{\pi }{{18}} + k2\pi ,k \in Z
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247