Đưa các biểu thức về dạng \(C\sin \left( {x + \alpha } \right)\):
a) \(\sin x + \tan \frac{\pi }{7}\cos x\)
b) \(\tan \frac{\pi }{7}\sin x + \cos x\)
a)
\(\begin{array}{l}
\sin x + \tan \frac{\pi }{7}\cos x = \sin x + \frac{{\sin \frac{\pi }{7}}}{{\cos \frac{\pi }{7}}}\cos x\\
= \frac{1}{{\cos \frac{\pi }{7}}}\left( {\sin x\cos \frac{\pi }{7} + \sin \frac{\pi }{7}\cos \frac{\pi }{7}} \right)\\
= \frac{1}{{\cos \frac{\pi }{7}}}\sin \left( {x + \frac{\pi }{7}} \right)
\end{array}\)
b)
\(\begin{array}{l}
\tan \frac{\pi }{7}\sin x + \cos x = \frac{{\sin \frac{\pi }{7}}}{{\cos \frac{\pi }{7}}}\sin x + \cos x\\
= \frac{1}{{\cos \frac{\pi }{7}}}\left( {\sin x\sin \frac{\pi }{7} + \cos x\cos \frac{\pi }{7}} \right)\\
= \frac{1}{{\cos \frac{\pi }{7}}}\cos \left( {x - \frac{\pi }{7}} \right) = \frac{1}{{\cos \frac{\pi }{7}}}\sin \left( {x - \frac{\pi }{7} + \frac{\pi }{2}} \right)
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247