Giải các phương trình sau:
a) \({\cos ^2}x - 3{\sin ^2}x = 0\)
b) \({\left( {\tan x + \cot x} \right)^2} - \left( {\tan x + \cot x} \right) = 2\)
c) \(\sin x + {\sin ^2}\frac{x}{2} = 0,5\)
a)
\(\begin{array}{l}
{\cos ^2}x - 3{\sin ^2}x = 0\\
\Leftrightarrow \frac{{1 + \cos 2x}}{2} - \frac{{3\left( {1 - \cos 2x} \right)}}{2} = 0\\
\Leftrightarrow \cos 2x = \frac{1}{2} \Leftrightarrow 2x = \pm \frac{\pi }{3} + k2\pi \\
\Leftrightarrow x = \pm \frac{\pi }{6} + k\pi
\end{array}\)
b) Đặt \(t = \tan x + \cot x\) với điều kiện:
\(\left| t \right| = \left| {\tan x} \right| + \left| {\cot x} \right| \ge 2\)
(BĐT Cô - si)
Ta có:
\(\begin{array}{l}
{t^2} - t = 2 \Leftrightarrow {t^2} - t - 2 = 0\\
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{t = - 1\left( l \right)}\\
{t = 2}
\end{array}} \right.
\end{array}\)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
t = 2 \Leftrightarrow \tan x + \cot x = 2\\
\Leftrightarrow \tan x + \frac{1}{{\tan x}} = 2
\end{array}\\
{ \Leftrightarrow {{\tan }^2}x - 2\tan x + 1 = 0}\\
{ \Leftrightarrow \tan x = 1 \Leftrightarrow x = \frac{\pi }{4} + k\pi }
\end{array}\)
c)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\sin x + {\sin ^2}\frac{x}{2} = 0,5\\
\Leftrightarrow \sin x + \frac{{1 - \cos x}}{2} = \frac{1}{2}
\end{array}\\
{ \Leftrightarrow \sin x = \frac{1}{2}\cos x}\\
{ \Leftrightarrow \tan x = \frac{1}{2} \Leftrightarrow x = \alpha + k\pi }
\end{array}\)
trong đó \(\tan \alpha = \frac{1}{2}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247