Giải các phương trình sau:
a) \(2\cos x - \sqrt 3 = 0\)
b) \(\sqrt 3 \tan 3x - 3 = 0\)
c) \(\left( {\sin x + 1} \right)\left( {2\cos 2x - \sqrt 2 } \right) = 0\)
a)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
2\cos x - \sqrt 3 = 0 \Leftrightarrow \cos x = \frac{{\sqrt 3 }}{2}\\
\Leftrightarrow \cos x = \cos \frac{\pi }{6}
\end{array}\\
{ \Leftrightarrow x = \pm \frac{\pi }{6} + k2\pi ,k \in Z}
\end{array}\)
b)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\sqrt 3 \tan 3x - 3 = 0 \Leftrightarrow \tan 3x = \sqrt 3 \\
\Leftrightarrow \tan 3x = \tan \frac{\pi }{3} \Leftrightarrow 3x = \frac{\pi }{3} + k\pi
\end{array}\\
{ \Leftrightarrow x = \frac{\pi }{9} + k\frac{\pi }{3},k \in Z}
\end{array}\)
c)
\(\begin{array}{l}
\left( {\sin x + 1} \right)\left( {2\cos 2x - \sqrt 2 } \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x + 1 = 0\\
2\cos 2x - \sqrt 2 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\sin x = - 1\\
\cos 2x = \frac{{\sqrt 2 }}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \frac{\pi }{2} + k2\pi \\
2x = \pm \frac{\pi }{4} + k2\pi
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = - \frac{\pi }{2} + k2\pi \\
x = \pm \frac{\pi }{8} + k\pi
\end{array} \right.
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247