Tìm tập xác định của mỗi hàm số sau:
a) \(y = \frac{{1 - \cos x}}{{2\sin x + \sqrt 2 }}\)
b) \(y = \frac{{\sin \left( {x - 2} \right)}}{{\cos 2x - \cos x}}\)
c) \(y = \frac{{\tan x}}{{1 + \tan x}}\)
d) \(y = \frac{1}{{\sqrt 3 \cot 2x + 1}}\)
a) \(y = \frac{{1 - \cos x}}{{2\sin x + \sqrt 2 }}\) xác định \( \Leftrightarrow 2\sin x + \sqrt 2 \ne 0\)
\( \Leftrightarrow {\mathop{\rm sinx}\nolimits} \ne - \frac{{\sqrt 2 }}{2} \Leftrightarrow \left\{ \begin{array}{l}
x \ne - \frac{\pi }{4} + k2\pi \\
x \ne \frac{{5\pi }}{4} + k2\pi
\end{array} \right.\)
Vậy \(D = R\backslash \left( {\left\{ { - \frac{\pi }{4} + k2\pi ,k \in Z} \right\} \cup \left\{ {\frac{{5\pi }}{4} + k2\pi ,k \in Z} \right\}} \right)\)
b) \(y = \frac{{\sin \left( {x - 2} \right)}}{{\cos 2x - \cos x}}\) xác định \( \Leftrightarrow \cos 2x \ne \cos x\)
\(\begin{array}{l}
\Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{2x \ne x + k2\pi }\\
{2x \ne - x + k2\pi }
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x \ne k2\pi }\\
{x \ne k\frac{{2\pi }}{3}}
\end{array}} \right.\\
\Leftrightarrow x \ne k\frac{{2\pi }}{3}
\end{array}\)
Vậy \(D = R\backslash \left\{ {k\frac{{2\pi }}{3},k \in Z} \right\}\)
c)
\(y = \frac{{\tan x}}{{1 + \tan x}}\) xác định
\( \Leftrightarrow \tan x \ne - 1 \Leftrightarrow \left\{ \begin{array}{l}
x \ne \frac{\pi }{2} + k\pi \\
x \ne - \frac{\pi }{4} + k\pi
\end{array} \right.\)
Vậy \(D = R\backslash \left( {\left\{ {\frac{\pi }{2} + k\pi ,k \in Z} \right\} \cup \left\{ { - \frac{\pi }{4} + k\pi ,k \in Z} \right\}} \right)\)
d)
\(y = \frac{1}{{\sqrt 3 \cot 2x + 1}}\) xác định
\( \Leftrightarrow \cot 2x \ne - \frac{1}{{\sqrt 3 }}\)
\( \Leftrightarrow \left\{ \begin{array}{l}
2x \ne k\pi \\
2x \ne - \frac{\pi }{3} + k\pi
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ne k\frac{\pi }{2}\\
x \ne - \frac{\pi }{6} + k\frac{\pi }{2}
\end{array} \right.\)
Vậy \(D = R\backslash \left( {\left\{ {k\frac{\pi }{2},k \in Z} \right\} \cup \left\{ { - \frac{\pi }{6} + k\frac{\pi }{2},k \in Z} \right\}} \right)\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247