Giải các phương trình sau:
a) \(\small cosx - \sqrt{3}sinx = \sqrt{2}\)
b) \(\small 3sin3x - 4cos3x = 5\)
c) \(\small 2sin2x + 2cos2x -\sqrt{2} = 0\)
d) \(\small 5cos2x + 12sin2x - 13 = 0\)
Điều kiện có nghiệm: \({a^2} + {b^2} \ge {c^2}\)
Chia hai vế của (1) cho \(\sqrt {{a^2} + {b^2}} \), ta được:
\(\left( 1 \right) \Leftrightarrow \frac{a}{{\sqrt {{a^2} + {b^2}} }}\sin x + \frac{b}{{\sqrt {{a^2} + {b^2}} }}\cos x = \frac{c}{{\sqrt {{a^2} + {b^2}} }}\)
Vì \({\left( {\frac{a}{{\sqrt {{a^2} + {b^2}} }}} \right)^2} + {\left( {\frac{b}{{\sqrt {{a^2} + {b^2}} }}} \right)^2} = 1\) nên ta đặt \(\left\{ {\begin{array}{*{20}{c}}{\sin \varphi = \frac{a}{{\sqrt {{a^2} + {b^2}} }}}\\{\cos \varphi = \frac{b}{{\sqrt {{a^2} + {b^2}} }}}\end{array}} \right.\)
Phương trình trở thành:
\(\sin x\sin \varphi + \cos x\cos \varphi = \frac{c}{{\sqrt {{a^2} + {b^2}} }} \Leftrightarrow \cos \left( {x - \varphi } \right) = \frac{c}{{\sqrt {{a^2} + {b^2}} }}\)
Đặt \(\cos \alpha = \frac{c}{{\sqrt {{a^2} + {b^2}} }}\) ta được phương trình lượng giác cơ bản.
Khi đó phương trình trở thành: \({\mathop{\rm sinxcos}\nolimits} \varphi + cosxsin\varphi = \frac{c}{{\sqrt {{a^2} + {b^2}} }} \Leftrightarrow \sin \left( {x + \varphi } \right) = \frac{c}{{\sqrt {{a^2} + {b^2}} }}\)
Câu a:
\(\cos x - \sqrt 3 \sin x = \sqrt 2 \)
\(\begin{array}{l} \Leftrightarrow \frac{1}{2}\cos x - \frac{{\sqrt 3 }}{2}{\mathop{\rm sinx}\nolimits} = \frac{1}{{\sqrt 2 }}\\ \Leftrightarrow \sin \frac{\pi }{6}.\cos x - \cos \frac{\pi }{6}.\sin x = \frac{1}{{\sqrt 2 }}\\ \Leftrightarrow \sin \left( {\frac{\pi }{6} - x} \right) = \frac{1}{{\sqrt 2 }} \Leftrightarrow \sin \left( {\frac{\pi }{6} - x} \right) = \sin \frac{\pi }{4}\\ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{6} - x = \frac{\pi }{4} + k2\pi \\\frac{\pi }{6} - x = \frac{{3\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{{12}} + k2\pi \\x = - \frac{{7\pi }}{{12}} + k2\pi \end{array} \right.,k \in \mathbb{Z}.\end{array}\)
Câu b:
\(3\sin 3x - 4\cos 3x = 5 \Leftrightarrow \frac{3}{5}\sin 3x - \frac{4}{5}\cos 3x = 1.\)
Đặt \(\cos \alpha = \frac{3}{5},\,\sin \alpha = \frac{4}{5},\) suy ra:
\(\sin (3x - \alpha ) = 1 \Leftrightarrow 3x - \alpha = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{\pi }{6} + \frac{\alpha }{3} + k\frac{{2\pi }}{3},k \in \mathbb{Z}.\)
Câu c:
\(\begin{array}{l}2\sin x + 2{\mathop{\rm cosx}\nolimits} - \sqrt 2 = 0\\ \Leftrightarrow \sin x + \cos x = \frac{1}{{\sqrt 2 }}\\ \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }}\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{2}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{6} + k2\pi \\x + \frac{\pi }{4} = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{{12}} + k2\pi \\x = \frac{{7\pi }}{{12}} + k2\pi \end{array} \right.,k \in \mathbb{Z}.\end{array}\)
Câu d:
\(\begin{array}{l}5\cos 2x + 12\sin 2x - 13 = 0\\ \Leftrightarrow 12\sin 2x + 5\cos 2x = 13\\ \Leftrightarrow \frac{{12}}{{13}}\sin 2x + \frac{5}{{13}}\cos 2x = 1\end{array}\)
\( \Leftrightarrow \sin (2x + \alpha ) = 1\) \(\left( {\sin \alpha = \frac{5}{{13}};\,\cos \alpha = \frac{{12}}{{13}}} \right)\)
\(\begin{array}{l} \Leftrightarrow 2x + \alpha = \frac{\pi }{2} + k2\pi \\ \Leftrightarrow x = \frac{\pi }{4} - \frac{\alpha }{2} + k\pi ,k \in \mathbb{Z}.\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247