Bài tập 40 trang 83 SGK Toán 9 Tập 2

Lý thuyết Bài tập
Câu hỏi:

Bài tập 40 trang 83 SGK Toán 9 Tập 2

Qua điểm S nằm bên ngoài đường tròn (O), vẽ tiếp tuyến SA và cát tuyến SBC của đường tròn. Tia phân giác của góc BAC cắt dây BC tại D. Chứng minh SA = SD.

Với bài tập 40 này, chúng ta sẽ sử dụng tính chất góc có đỉnh nằm trong đường tròn để giải bài toán, kết hợp góc tạo bởi tiếp tuyến và dây cung.

Gọi giao điểm của AD với đường tròn là E.

Vì AE là tia phân giác của góc BAC

\(\Rightarrow \widehat{BAE}=\widehat{CAE}=\frac{1}{2}\widehat{BAC}\)

\(\Rightarrow sd\widehat{BE}=sd\widehat{EC}\)

Ta có góc ADS là góc có đỉnh bên trong đường tròn

\(\Rightarrow \widehat{ADS}=\frac{sd\widehat{AB}+sd\widehat{BE}}{2}\)

\(=\frac{sd\widehat{AB}+sd\widehat{CE}}{2}=\frac{1}{2}sd\widehat{AE}\)

Mặc khác, góc SAD là góc tạo bởi tiếp tuyến SA và dây cung AE

\(\Rightarrow \widehat{SAD}=\frac{1}{2}sd\widehat{AE}\)

Từ các điều trên:

\(\Rightarrow \widehat{SAD}=\widehat{SDA}\)

Vậy tam giác SDA cân tại S

\(\Rightarrow SA=SD\)

 

-- Mod Toán 9

Copyright © 2021 HOCTAP247