Viết phương trình chính tắc của đường elip (E) trong mỗi trường hợp sau
a) (E) có độ dài trục lớn bằng 8 và tâm sai \(e = \frac{{\sqrt 3 }}{2}\);
b) (E) có độ dài trục bé bằng 8 và tiêu cự bằng 4;
c) (E) có một tiêu điểm là \(F\left( {\sqrt 3 ;0} \right)\) và đi qua điểm \(M\left( {1;\frac{{\sqrt 3 }}{2}} \right)\).
a) Ta có:
\(\begin{array}{l}
2a = 8 \Leftrightarrow a = 4\\
e = \frac{c}{a} = \frac{{\sqrt 3 }}{2} \Rightarrow c = 2\sqrt 3 \\
{b^2} = {a^2} - {c^2} = 16 - 12 = 4
\end{array}\)
Vậy \(\left( E \right):\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\)
b) Ta có:
\(\begin{array}{l}
2b = 8 \Leftrightarrow b = 4\\
2c = 4 \Leftrightarrow c = 2\\
{a^2} = {b^2} + {c^2} = 16 + 4 = 20
\end{array}\)
Vậy \(\left( E \right):\frac{{{x^2}}}{{20}} + \frac{{{y^2}}}{{16}} = 1\)
c) Ta có: \(c = \sqrt 3 \Rightarrow {a^2} - {b^2} = 3\)
Giả sử \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)
\(M\left( {1;\frac{{\sqrt 3 }}{2}} \right) \in \left( E \right)\) nên \(\frac{1}{{{a^2}}} + \frac{3}{{4{b^2}}} = 1\)
Ta có hệ phương trình:
\(\begin{array}{l}
\left\{ \begin{array}{l}
{a^2} - {b^2} = 3\\
\frac{1}{{{a^2}}} + \frac{3}{{4{b^2}}} = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{a^2} = {b^2} + 3\\
\frac{1}{{{b^2} + 3}} + \frac{3}{{4{b^2}}} = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{a^2} = {b^2} + 3\\
4{b^2} + 3{b^2} + 9 = 4{b^4} + 12{b^2}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{a^2} = {b^2} + 3\\
4{b^4} + 5{b^2} - 9 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{b^2} = - \frac{9}{4}\left( l \right)\\
{b^2} = 1 \Rightarrow {a^2} = 4
\end{array} \right.
\end{array}\)
Vậy \(\left( E \right):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247