Giải các phương trình
a) \(\sqrt{5x +6} = x - 6;\)
b) \(\sqrt{3 -x}=\sqrt{x +2}+1;\)
c) \(\sqrt{2x^{2} +5}= x + 2.\)
d) \(\sqrt{4x^{2} +2x + 10} = 3x + 1.\)
Câu a:
\(\sqrt {5x + 6} = x - 6 \Leftrightarrow \left\{ \begin{array}{l}x - 6 \ge 0\\5x + 6 = {(x - 6)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 6\\{x^2} - 17x + 30 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 6\\\left[ \begin{array}{l}x = 15 \Leftrightarrow x = 15\\x = 2\end{array} \right.\end{array} \right.\)
Vậy S = {15}
Câu b:
Điều kiện \( - 2 \le x \le 3.\)
Ta có: \(\sqrt {3 - x} = \sqrt {x + 2} + 1 \Leftrightarrow 3 - x = x + 2 + 2\sqrt {x + 2} + 1\)
\( \Leftrightarrow \sqrt {x + 2} = - x \Leftrightarrow \left\{ \begin{array}{l} - x \ge 0\\x + 2 = {x^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 0\\{x^2} - x - 2 = 0\end{array} \right.\)
\( \Leftrightarrow x = - 1\) (nhận)
Vậy S = {-1}
Câu c:
\(\sqrt {2{x^2} + 5} = x + 2 \Leftrightarrow \left\{ \begin{array}{l}x + 2 \ge 0\\2{x^2} + 5 = {(x + 2)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge - 2\\{x^2} - 4x + 1 = 0\end{array} \right.\)
\( \Leftrightarrow x = 2 \pm \sqrt 3 \)
Vậy \(S = \left\{ {2 - \sqrt 3 ;2 + \sqrt 3 } \right\}\)
Câu d:
\(\sqrt {4{x^2} + 2x + 10} = 3x + 1 \Leftrightarrow \left\{ \begin{array}{l}3x + 1 \ge 0\\4{x^2} + 2x + 10 = {(3x + 1)^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge - \frac{1}{3}\\5{x^2} + 4x - 9 = 0\end{array} \right. \Leftrightarrow x = 1.\)
Vậy S ={1}
-- Mod Toán 10
Copyright © 2021 HOCTAP247