Giải các hệ phương trình
a) \(\left\{\begin{matrix} x + 3y + 2z =8 & \\ 2x + 2y + z =6& \\ 3x +y+z=6;& \end{matrix}\right.\)
b) \(\left\{\begin{matrix} x - 3y + 2z =-7 & \\ -2x + 4y + 3z =8& \\ 3x +y-z=5.& \end{matrix}\right.\)
Câu a:
\(\left\{ \begin{array}{l}x - 3y + 2z = 8 & (1)\\2x + 2y + z = 6 & (2)\\3x + y + z = 6 & & (3)\end{array} \right.\)
Lấy (3) trừ (2) vế cho vế ta được:
\(\left\{ \begin{array}{l}x + 3y + 2z = 8\\2x + 2y + z = 6\\x - y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = y\\4x + 2z = 8\\4x + z = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = y\\z = 2\\x = 1\end{array} \right.\)
Vậy hệ có nghiệm \(\left\{ \begin{array}{l}x = y\\z = 2\\x = 1\end{array} \right.\)
Câu b:
\(\left\{ \begin{array}{l}x - 3xy + 2z = - 7\\ - 2x + 4y + 3z = 8\\3x + y - z = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x - 6y + 4z = - 14 & & (1)\\ - 2x + 4y + 3z = 8 & & (2)\\3x + y - z = 5 & & & (3)\end{array} \right.\)
Lấy (1) cộng (2) vế cho vế ta được:
\[\left\{ \begin{array}{l} - 2y + 7z = - 6 & (4)\\ - 2x + 4y + 3z = 8 & (2)\\3x + y - z = 5 & & (3)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2y + 7z = - 6\\ - 6x + 12y + 9z = 24\\6x + 2y - 2z = 10\end{array} \right.\]
\(\left\{ \begin{array}{l} - 2y - 7z = - 6\\14y + 7z = 34\\3x + y - z = 5\end{array} \right. \Leftrightarrow \left\{\begin{array}{l}16y = 40\\ - 2y + 7z = - 6\\3x + y - z = 5\end{array} \right.\)
\(\Leftrightarrow \left\{ \begin{array}{l}y = \frac{5}{2}\\z = \frac{{2y - 6}}{7}\\x = \frac{{5 - y + z}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \frac{5}{2}\\z = - \frac{1}{7}\\x = \frac{{11}}{{14}}\end{array} \right.\)
Vậy hệ phương trình có nghiệm: \(\left\{ \begin{array}{l}y = \frac{5}{2}\\z = - \frac{1}{7}\\x = \frac{{11}}{{14}}\end{array} \right.\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247