Giải các hệ phương trình
a) \(\left\{\begin{matrix} 2x - 3y = 1 & \\ x + 2y = 3;& \end{matrix}\right.\)
b) \(\left\{\begin{matrix} 3x + 4y = 5 & \\ 4x - 2y = 2;& \end{matrix}\right.\)
c) \(\left\{ \begin{array}{l}\frac{2}{3}x + \frac{1}{2}y = \frac{2}{3}\\\frac{1}{3}x - \frac{3}{4}y = \frac{1}{2}\end{array} \right.\)
d) \(\left\{ \begin{array}{l}0,3x - 0,2y = 0,5\\0,5x + 0,4y = 1,2.\end{array} \right.\)
Câu a:
\(\left\{ \begin{array}{l}2x - 3y = 1\\x + 2y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x - 3y = 1\,\,\,(1)\\x = 3 - 2y\,\,\,\,\,\,(2)\end{array} \right.\)
Thế (2) vào (1) suy ra:
\(2(3 - 2y) - 3y = 1 \Leftrightarrow - 7y = - 5 \Leftrightarrow y = \frac{5}{7}\)
Vậy hệ phương trình có nghiệm: \(\left\{ \begin{array}{l}x = \frac{{11}}{7}\\y = \frac{5}{7}\end{array} \right.\)
Câu b:
\(\left\{ \begin{array}{l}3x + 4y = 5\\4x - 2y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + 4y = 5\\8x - 4y = 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}11x = 9\\y = \frac{{5 - 3x}}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{9}{{11}}\\y = \frac{7}{{11}}\end{array} \right.\)
Vậy hệ phương trình có nghiệm: \(\left\{ \begin{array}{l}x = \frac{9}{{11}}\\y = \frac{7}{{11}}\end{array} \right.\)
Câu c:
\(\left\{ \begin{array}{l}\frac{2}{3}x + \frac{1}{2}y = \frac{2}{3}\\\frac{1}{3}x - \frac{3}{4}y = \frac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4x + 3y = 4\\4x - 9y = 6\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}12y = - 2\\x = \frac{{4 - 3y}}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = - \frac{1}{6}\\x = \frac{9}{8}\end{array} \right.\)
Vậy hệ phương trình có nghiệm: \(\left\{ \begin{array}{l}x = \frac{9}{8}\\y = - \frac{1}{6}\end{array} \right.\)
Câu d:
\(\left\{ \begin{array}{l}0,3x - 0,2y = 0,5\\0,5x + 0,4y = 1,2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x - 2y = 5\\5x + 4y = 12\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}6x - 4y = 10\\5x + 4y = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}11x = 22\\y = \frac{{12 - 5x}}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = \frac{1}{2}\end{array} \right.\)
Vậy hệ phương trình có nghiệm: \(\left\{ \begin{array}{l}x = 2\\y = \frac{1}{2}\end{array} \right.\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247