Bài tập 9 trang 71 SGK Đại số 10

Lý thuyết Bài tập
Câu hỏi:

Bài tập 9 trang 71 SGK Đại số 10

Một phân xưởng được giao sản xuất 360 sản phẩm trong một số ngày nhất định. Vì phân xưởng tăng năng suất, mỗi ngày làm thêm được 9 sản phẩm so với định mức, nên trước khi hết hạn một ngày thì phân xưởng đã làm vượt số sản phẩm được giao là 5%. Hỏi nếu vẫn tiếp tục làm việc với năng suất đó thì khi hết hạn phân xưởng đó làm được tất cả bao nhiêu sản phẩm.

Gọi x là số sản phẩm trong một ngày phân xưởng giao (\[x{\rm{ }} > {\rm{ }}0,x \in \mathbb{N},x\] tính bằng sản phẩm).

Y là số ngày phân xưởng được giao (y > 1, y tính bằng ngày).

Khi tăng năng suất, mỗi ngày phân xưởng sản xuất được x + 9 (sản phẩm)

Theo bài ra:

\((x + 9)(y - 1) = \frac{{360.105}}{{100}} \Leftrightarrow (x + y)(y - 1) = 378\,\,\,\,\,\,\,\,\,\,(1)\)

Mặt khác: x . y = 360

Từ (1), (2) ta có hệ:

\(\left\{ \begin{array}{l}xy = 360\\(x + 9)(y - 1) = 378\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}xy = 360\\xy - x + 9y - 9 = 378\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}xy = 360\\x = 9y - 27\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}(9y - 27)y = 360\\x = 9y - 27\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}y = 8\\y =  - 5\,\,(loai)\end{array} \right.\\x = 45\end{array} \right.\)

Tóm lại: Vẫn tiếp tục làm việc với năng suất mỗi ngày thêm 9 sản phẩm thì hết hạn phân xưởng đó làm được là:

(45 + 9). 8= 432 (sản phẩm)

 

-- Mod Toán 10

Copyright © 2021 HOCTAP247