Bài tập 17 trang 109 SGK Toán 11 NC

Lý thuyết Bài tập
Câu hỏi:

Bài tập 17 trang 109 SGK Toán 11 NC

Cho dãy số (un) xác định bởi

u1 = 1 và \({u_{n + 1}} = \frac{2}{{u_n^2 + 1}}\) với mọi n ≥ 1

Chứng minh rằng (un) là một dãy số không đổi (dãy có tất cả các số hạng đều bằng nhau).

Ta chứng minh un = 1 (1), ∀n ∈ N bằng qui nạp:

  • Rõ ràng (1) đúng với n = 1
  • Giả sử (1) đúng với n = k, tức là ta có uk = 1
  • Ta chứng minh (1) đúng với n = k+1.

Thật vậy theo công thức truy hồi và giả thiết quy nạp ta có:

\({u_{k + 1}} = \frac{2}{{u_k^2 + 1}} = \frac{2}{{{1^2} + 1}} = 1\)

Vậy (1) đúng với n = k+1, do đó (1) đúng với mọi n ∈ N

 

-- Mod Toán 11

Copyright © 2021 HOCTAP247