Cho hình vuông C1 có cạnh bằng 4. Người ta chia các cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông lại làm tiếp tục như trên để được hình vuông C2. Từ hình vuông C2 lại tiếp như trên để được hình vuông C3. Tiếp tục quá trình như trên, ta nhận được dãy các hình vuông \(C_1, C_2, ...,C_n.\) Gọi an là độ dài cạnh của hình vuông Cn. Chứng minh dãy số (an) là một cấp số nhân.
Hình vuông C1 có cạnh a1 = 4. Từ đó ta tính được hình vuông C2 có cạnh \(a_2=\sqrt{1^2+3^2}=\sqrt{10}\), hình vuông C3 có cạnh \(a_3=\frac{5}{2}\), hình vuông C4 có cạnh là \(a_4=\frac{5\sqrt{10}}{8}\)
Từ đó ⇒ \((a_n)\) là cấp số nhân có a1 = 4 và công bội \(q=\frac{\sqrt{10}}{4}.\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247