Bài tập 32 trang 121 SGK Toán 11 NC

Lý thuyết Bài tập
Câu hỏi:

Bài tập 32 trang 121 SGK Toán 11 NC

Một cấp số nhân có năm số hạng mà hai số hạng đầu tiên là những số dương, tích của số hạng đầu và số hạng thứ ba bằng 1, tích của số hạng thứ ba và số hạng cuối bằng \(\frac{1}{{16}}\). Hãy tìm cấp số nhân đó.

Với mỗi n ∈ {1,2,3,4,5}, kí hiệu un là số hạng thứ n của cấp số nhân đã cho.

Vì u1 > 0, u2 > 0 nên cấp số nhân (un) có công bội q > 0, và do đó un > 0, ∀n ∈ {1,2,3,4,5}. Từ đó:

\(\begin{array}{l}
1 = {u_1}.{u_3} = u_2^2 \Rightarrow {u_2} = 1\\
\frac{1}{{16}} = {u_3}.{u_5} = u_4^2 \Rightarrow {u_4} = \frac{1}{4}\\
u_3^2 = {u_2}.{u_4} = \frac{1}{4} \Rightarrow {u_3} = \frac{1}{2}
\end{array}\)

Do đó \({u_1} = \frac{1}{{{u_3}}} = 2\) và 

\({u_5} = \frac{1}{{16}}:{u_3} = \frac{1}{8}\)

Vậy cấp số nhân cần tìm là:

\(2;1;\frac{1}{2};\frac{1}{4};\frac{1}{8}\).

 

-- Mod Toán 11

Copyright © 2021 HOCTAP247