Bài tập 4 trang 104 SGK Đại số & Giải tích 11

Lý thuyết Bài tập
Câu hỏi:

Bài tập 4 trang 104 SGK Đại số & Giải tích 11

Tìm cấp số nhân có sau số hạng, biết rằng tổng của năm số hạng đầu là 31 và tổng của năm số hạng sau là 62.

Gọi cấp số nhân tìm là (un) có số hạng đầu là (u1) và công bội là q.

Nhân hai vế của (1) với q, ta có:

\({u_1}q + {u_2}q + {u_3}q + {u_4}q + {u_5}q = 31q\)

Hay: \({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 31q\)

Suy ra: \(31q = 62 \Rightarrow q = 2\)

\(\begin{array}{l}{S_5} = 31 = \frac{{{u_1}(1 - {q^5})}}{{1 - q}} = \frac{{{u_1}(1 - {2^5})}}{{ - 1}}\\ \Rightarrow {u_1} = 1.\end{array}\)

Vậy sáu số hạng của cấp số nhân cần tìm là: 1, 2, 4, 8, 16, 32.    

 

-- Mod Toán 11

Video hướng dẫn giải bài 4 SGK

Copyright © 2021 HOCTAP247