Bài tập 38 trang 121 SGK Toán 11 NC

Lý thuyết Bài tập
Câu hỏi:

Bài tập 38 trang 121 SGK Toán 11 NC

Hãy chọn những khẳng định đúng trong các khẳng định dưới đây:

a. Nếu các số thực a, b, c mà abc ≠ 0, theo thứ tự đó lập thành một cấp số cộng với công sai khác 0 thì các số \(\frac{1}{a},\frac{1}{b},\frac{1}{c}\) theo thứ tự đó cũng lập thành một cấp số cộng.

b. Nếu các số thực a, b, c mà abc ≠ 0, theo thứ tự đó lập thành một cấp số nhân thì các số \(\frac{1}{a},\frac{1}{b},\frac{1}{c}\) theo thứ tự đó cũng lập thành một cấp số nhân.

c. \(1 + \pi  + {\pi ^2} + ... + {\pi ^{100}} = \frac{{{\pi ^{100}} - 1}}{{\pi  - 1}}\)

a) Sai, vì 1, 2, 3 là cấp số cộng nhưng \(1,\frac{1}{2},\frac{1}{3}\) không là cấp số cộng.

b) Đúng, vì nếu a, b, c là cấp số nhân công bội q ≠ 0 thì \(\frac{1}{a},\frac{1}{b},\frac{1}{c}\) là cấp số nhân công bội  \(\frac{1}{q}\).

c) Sai, vì \(1 + \pi  + {\pi ^2} + ... + {\pi ^{100}} = \frac{{{\pi ^{101}} - 1}}{{\pi  - 1}}\)

 

-- Mod Toán 11

Copyright © 2021 HOCTAP247