Chứng minh các dãy số \((\frac{3}{5}. 2^n)\) , \((\frac{5}{2^{n}})\), \(((-\frac{1}{2})^{n})\) là các cấp số nhân.
Xét \((u_n)\) với \(u_n=\frac{3}{5}.2^n\), ta có \(\frac{u_{n+1}}{u_n}=\frac{\frac{3}{5}.2^{n+1}}{\frac{3}{5}.2^n}=2\)
\(\Leftrightarrow u_{n+1}=2.u_n\Rightarrow (u_n)\) là cấp số nhân có \(u_1=\frac{6}{5}\) và q = 2.
Xét \((u_n)\) với \(u_n=\frac{5}{2^n}\), ta có \(\frac{u_{n+1}}{u_n}=\frac{\frac{5}{2}.2^{n+1}}{\frac{5}{2^n}}= \frac{5.2^n}{5.2^{n+1}}=\frac{1}{2}\)
\(\Leftrightarrow u_{n+1}=\frac{1}{2}\Rightarrow (u_n)\) là cấp số nhân có \(u_1=\frac{5}{2}\) và \(q=\frac{1}{2}.\)
Xét \((u_n)\) với \(u_n=\left ( -\frac{1}{2} \right )^n\), ta có \(\frac{u_{n+1}}{n}= \frac{\left ( -\frac{1}{2} \right )^{n+1}}{\left ( -\frac{1}{2} \right )^{n}}=-\frac{1}{2}\)
\(\Leftrightarrow u_{n+1}=-\frac{1}{2}.(u_n)\Rightarrow (u_n)\) là cấp số nhân có \(u_1=-1\) và \(q=-\frac{1}{2}.\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247