Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và \(\widehat {BAD} = \widehat {BAA\prime } = \widehat {DAA\prime } = {60^0}\). Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’)
Từ giả thiết suy ra các tam giác A’AD, BAD, A’AB là các tam giác cân cùng có góc ở đỉnh bằng 600 nên chúng là các tam giác đều. Như vậy tứ diện A’ABD có các cạnh cùng bằng a hay A’ABD là tứ diện đều. Khi đó hình chiếu của A’ trên mp(ABCD) chính là trọng tâm H của tam giác đều ABD. Khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’) chính là độ dài A’H. Ta có:
\(\begin{array}{l}
A\prime {H^2} = AA{\prime ^2} - A{H^2}\\
= {a^2} - {\left( {\frac{{a\sqrt 3 }}{3}} \right)^2} = {a^2} - \frac{{{a^2}}}{3} = \frac{{2{a^2}}}{3}
\end{array}\)
Vậy \(A\prime H = \frac{{a\sqrt 6 }}{3}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247