Lý thuyết Bài tập
Câu hỏi:

Bài tập 5 trang 105 SGK Hình học 11

Trên mặt phẳng \((\alpha )\) cho hình bình hành ABCD. Gọi O là giao điểm của AC và BD. S là một điểm nằm ngoài mặt phẳng \((\alpha )\) sao cho SA = SC, Sb = SD. Chứng minh rằng:

a) \(SO \perp (\alpha )\);

b) Nếu trong mặt phẳng (SAB) kẻ SH vuông góc với AB tại H thì AB vuông góc mặt phẳng (SOH).

Câu a:

Vì SA = SC ⇒ tam giác SAC là tam giác cân đỉnh S; O là trung điểm AC.

\(\Rightarrow SO\perp AC\)

\(\left.\begin{matrix} SO\perp AC\\ Tuong \ \ tu \ SO\perp BD \end{matrix}\right\}\Rightarrow SO\perp (ABCD)\)

Tức là \(SO\perp (\alpha )\) (đpcm)

Câu b:

Theo chứng minh câu a)

\(SO\perp (\alpha )\Rightarrow SO\perp AB\)

Lại có \(SH\perp AB\), suy ra \(AB\perp (SOH)\) (đpcm).

 

-- Mod Toán 11

Copyright © 2021 HOCTAP247