Bài tập 16 trang 103 SGK Hình học 11 NC

Lý thuyết Bài tập
Câu hỏi:

Bài tập 16 trang 103 SGK Hình học 11 NC

Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc và AB = a, BC = b, CD = c.

a. Tính độ dài AD.

b. Chỉ ra điểm cách đều A, B, C, D

c. Tính góc giữa đường thẳng AD và mặt phẳng (BCD), góc giữa đường thẳng AD và mặt phẳng (ABC).

Giải Toán 11 nâng cao | Giải bài tập Toán lớp 11 nâng cao

a) Ta có: CD ⊥ BC và CD ⊥ AB nên CD ⊥ (ABC)

mà AC ⊂ (ABC) do đó CD ⊥ AC.

Trong tam giác vuông ABC ta có:

\(A{C^2} = A{B^2} + B{C^2} = {a^2} + {b^2}\)

Trong tam giác vuông ACD ta có:

\(\begin{array}{l}
A{D^2} = A{C^2} + C{D^2} = {a^2} + {b^2} + {c^2}\\
 \Rightarrow AD = \sqrt {{a^2} + {b^2} + {c^2}} 
\end{array}\)

b) Ta có: AB ⊥ BC và AB ⊥ CD suy ra AB ⊥ (BCD) do đó AB ⊥ BD.

Gọi I là trung điểm AD ta có IC = IA = IB = ID.

Vậy I cách đều A, B, C, D.

c) Ta có: AB ⊥ (BCD) ⇒ BD là hình chiếu của ADAD trên (BCD)

Khi đó:

\(\widehat {\left( {AD,\left( {BCD} \right)} \right)} = \widehat {\left( {AD,BD} \right)} = \widehat {ADB}\)

Xét tam giác ABD vuông tại B thì 

\(\sin \widehat {ADB} = \frac{{AB}}{{AD}} = \frac{a}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

\( \Rightarrow \widehat {(AD,(BCD))} = arcsin\frac{a}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

Lại có DC ⊥ (ABC) ⇒ AC là hình chiếu của AD trên (ABC)

Khi đó 

\(\widehat {\left( {AD,\left( {ABC} \right)} \right)} = \widehat {\left( {AD,AC} \right)} = \widehat {DAC}\)

Xét tam giác ACD vuông tại C thì 

\(\sin \widehat {DAC} = \frac{{CD}}{{AD}} = \frac{c}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

\( \Rightarrow \widehat {(AD,(ABC))} = arcsin\frac{c}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

 

-- Mod Toán 11

Copyright © 2021 HOCTAP247