Chứng minh các hệ thức sau:
a) \({\sin ^2}\alpha + {\cos ^2}\alpha = )
b) \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\left( {\alpha \ne {{90}^0}} \)
c) \(1 + {\cot ^2}\alpha = \frac{1}{{{{\sin }^2}\alpha }}\left( {{0^0} < \alpha < {{180}^0}} \)
a) Giả sử M(x;y) trên đường tròn đơn vị, \(\widehat {MOx} = \alpha \). Ta có
Suy ra sin2α+cos2α = x2+y2 = OM2 = 1.
b) Ta có:
\(\begin{array}{l}
1 + {\tan ^2}\alpha = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }}\\
= \frac{{{{\cos }^2}\alpha + {{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}
\end{array}\)
c) Ta có:
\(\begin{array}{l}
1 + {\cot ^2}\alpha = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }}\\
= \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}
\end{array}\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247