Chứng minh các công thức sau:
a) \(\overrightarrow a .\overrightarrow b = \frac{1}{2}\left( {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - {{\left| {\overrightarrow a - \overrightarrow b } \right|}^2}} \right)\)
b) \(\overrightarrow a .\overrightarrow b = \frac{1}{4}\left( {{{\left| {\overrightarrow a + \overrightarrow b } \right|}^2} - {{\left| {\overrightarrow a - \overrightarrow b } \right|}^2}} \right)\)
a)
\(\begin{array}{l}
{\left| {\overrightarrow a - \overrightarrow b } \right|^2} = {\left( {\overrightarrow a - \overrightarrow b } \right)^2} = {\left| {\overrightarrow a } \right|^2} - 2\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow b } \right|^2}\\
\Rightarrow \overrightarrow a .\overrightarrow b = \frac{1}{2}\left( {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - {{\left| {\overrightarrow a - \overrightarrow b } \right|}^2}} \right)
\end{array}\)
b)
\(\begin{array}{l}
{\left| {\overrightarrow a + \overrightarrow b } \right|^2} - {\left| {\overrightarrow a - \overrightarrow b } \right|^2} = {\left( {\overrightarrow a + \overrightarrow b } \right)^2} - {\left( {\overrightarrow a - \overrightarrow b } \right)^2}\\
= \left( {\overrightarrow a + \overrightarrow b - \overrightarrow a + \overrightarrow b } \right)\left( {\overrightarrow a + \overrightarrow b + \overrightarrow a - \overrightarrow b } \right) = 4\overrightarrow a .\overrightarrow b \\
\Rightarrow \overrightarrow a .\overrightarrow b = \frac{1}{4}\left( {{{\left| {\overrightarrow a + \overrightarrow b } \right|}^2} - {{\left| {\overrightarrow a - \overrightarrow b } \right|}^2}} \right)
\end{array}\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247