Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A. Một điểm M chạy trên mặt phẳng (P) sao cho góc \(\widehat {ABM} = \widehat {BMH}\). Chứng minh rằng điểm M luôn luôn nằm trên một mặt trụ tròn xoay có trục là AB.
Giả sử ta có điểm M thuộc mặt phẳng (P) thỏa mãn các điều kiện của giả thiết đã cho.
Gọi I là hình chiếu vuông góc của M trên AB. Hai tam giác vuông BIM và MHB bằng nhau vì có cạnh huyền chung và một cặp góc nhọn bằng nhau.
Do đó MI = BH không đổi.
Vậy điểm M luôn luôn nằm trên mặt trụ trục AB và có bán kính bằng BH.
-- Mod Toán 12
Copyright © 2021 HOCTAP247