Một hình hộp chữ nhật có ba kích thước lần lượt là a, b, c. Gọi (S) là mặt cầu đi qua 8 đỉnh của hình hộp chữ nhật đó. Diện tích của mặt cầu (S) theo a, b, c là:
A. \(\pi \left( {{a^2} + {b^2} + {c^2}} \right)\)
B. \(2\pi \left( {{a^2} + {b^2} + {c^2}} \right)\)
C. \(4\pi \left( {{a^2} + {b^2} + {c^2}} \right)\)
D. \(\frac{\pi }{2}\left( {{a^2} + {b^2} + {c^2}} \right)\)
Bán kính mặt cầu ngoại tiếp hình hộp chữ nhật là: \(r = \frac{{\sqrt {{a^2} + {b^2} + {c^2}} }}{2}\).
Diện tích mặt cầu \(S = 4\pi {r^2} = 4\pi .\frac{{{a^2} + {b^2} + {c^2}}}{4} = \pi \left( {{a^2} + {b^2} + {c^2}} \right)\).
Chọn A.
-- Mod Toán 12
Copyright © 2021 HOCTAP247