Bài tập 21 trang 60 SGK Hình học 12 NC

Lý thuyết Bài tập
Câu hỏi:

Bài tập 21 trang 60 SGK Hình học 12 NC

Cho tam giác ABC vuông tại A, AB = c, AB = b. Tính thể tích của khối tròn xoay sinh bởi tam giác đó (kể cả các điểm trong) khi quay quanh đường thẳng BC.

Gọi AH là đường cao của tam giác ABC

Ta có:

\(\begin{array}{l}
\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\\
 \Rightarrow A{H^2} = \frac{{{b^2}{c^2}}}{{{b^2} + {c^2}}}
\end{array}\)

Hai tam giác ABH và ACH khi quay quanh BC lần lượt tạo thành hai khối nón H1, H2 có thể tích lần lượt là

\({V_1} = \frac{1}{3}\pi A{H^2}BH,{V_2} = \frac{1}{3}\pi A{H^2}CH\)

Thể tích của khối tròn xoay sinh bởi tam giác ABC khi quay quanh BC là:

\(\begin{array}{*{20}{l}}
\begin{array}{l}
V = {V_1} + {V_2}\\
 = \frac{1}{3}\pi A{H^2}BH + \frac{1}{3}\pi A{H^2}CH\\
 = \frac{1}{3}\pi A{H^2}BC
\end{array}\\
{ = \frac{1}{3}\pi \frac{{{b^2}{c^2}}}{{{b^2} + {c^2}}}\sqrt {{b^2} + {c^2}}  = \frac{{\pi {b^2}{c^2}}}{{3\sqrt {{b^2} + {c^2}} }}}
\end{array}\)

 

-- Mod Toán 12

Copyright © 2021 HOCTAP247